
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

ZoomShop: Depth-Aware Editing of Photographic Composition
(Supplemental Material)

Sean J. Liu1 , Maneesh Agrawala1 , Stephen DiVerdi2 and Aaron Hertzmann2

1Stanford University
2Adobe Research

Appendix A: Geometric Description and Derivation of b(z)

Here, we show how our b(z) camera parameterization can be un-
derstood geometrically in terms of non-linear camera models. We
first show that a piecewise-linear, continuous choice of b(z) corre-
sponds to a sequence of linear camera models, each applied to dif-
ferent depth ranges, equivalent to the Computational Zoom model
proposed by Badki et al. [BGKS17]. We then describe generaliza-
tions to non-linear and non-continuous b(z), and what these corre-
spond to geometrically. For each type of these b(z) (i.e., piecewise
linear, curved, and discontinuous), we show that Equation 1 holds:

u =
x

b(z)
(1)

Figure 1 shows the boundary curve b(z) for linear perspective,
piecewise linear, and curved camera models.

A.1 Piecewise Linear Camera Model

We first explore a piecewise linear camera model. In this model,
separate linear cameras are applied to each depth range, with conti-
nuity constraints between the cameras. We show how the b(z) for-
mulation can be derived from this model. Note that this model is
equivalent to Computational Zoom [BGKS17], and this shows how
Computational Zoom is a special case of our framework.

Figure 1b shows a piecewise linear camera model. With the cam-
era at the origin, and an image plane at focal depth f = z0, we di-
vide up the scene into a series of depth zones, bounded by depth
planes z1...zN , where zi < zi+1 for i ∈ [0...N − 1]. For each depth
plane, the corresponding half-plane width is Pi, which also marks
the view boundary at zi.

Virtual Camera Positions. In the piecewise linear camera
model, we can treat each individual depth zone i as a conventional
linear perspective projection, with Pi−1 as the “image plane” of that
zone, and zci as the position of the virtual camera. See Figure 1b for
an illustration.

For each zone i, we can compute the virtual camera position zci

by extrapolating where the bounds of zone i will hit the z-axis. Take
the example in Figure 1b. The line connecting (z2,P2) and (z3,P3)
is defined by:

l(z) = P2 +
P3 −P2
z3 − z2

(z− z2) (2)

The line will intersect the z-axis at zc3 :

l(zc3) = P2 +
P3 −P2
z3 − z2

(zc3 − z2) =⇒ 0 (3)

zc3 = z2 −
P2(z3 − z2)

P3 −P2
(4)

In general, for any depth zone i, we can compute zci :

zci = zi−1 −
Pi−1(zi − zi−1)

Pi −Pi−1
(5)

To compute the final position of a scene point (x,z) on P0, we it-
eratively project (x,z) onto intermediate “image planes” Pi−1, Pi−2,
..., until the final image plane P0.

Projection in Closed Form Solution The pseudo-code for pro-
jecting a point (x,z) iteratively to Pi−1,Pi−2... until the image plane
P0 is shown in Figure 2.

In general, given any point (x,z) in depth zone i, we can figure
out its projected point onto the previous plane Pi−1 via px = f

z x.
Offsetting f and z to be with respect to the virtual camera zci , the
projected position (x′,z′) onto the previous plane Pi−1 is:

x′ =
zi−1 − zci

z− zci
x (6)

z′ = zi−1 (7)

We can convert the pseudo-code iterative projection to closed
form. First, we substitute zci in Equation 6 (also line 9 of the
pseudo-code) with Equation 5:

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-1753-264X
https://orcid.org/0000-0002-8996-7327
https://orcid.org/0000-0002-6694-3381
https://orcid.org/0000-0001-9667-0292

S. J. Liu, M. Agrawala, S. DiVerdi & A. Hertzmann / ZoomShop: Depth-Aware Editing of Photographic Composition (Supplemental Material)

x

z
ZfarZnear

P

}

f

COP
p

(x, z)

Image
Plane

b(z)
Pnear

Pfar

(a) Linear Perspective Camera Model. P is the
half-width of the image plane in world space.
Znear and Zfar are the z-values of the near and
far plane, and f is the focal length of the cam-
era.

x

z
z3=Zfar

COP

p0

(x, z)

z2
z1z0

Image
Plane

P0

P1
P2

Zone 3Zone 2Zone 1

P3b(z)

zc3

Znear

p1 p2

(b) Piecewise Linear Perspective Camera
Model. In this example, the number of depth
zones N = 3. A scene point (x, z) gets itera-
tively projected onto planes P2, P1, and then P0
to form the final image. Each depth zone i obeys
linear perspective, with Pi−1 as the virtual im-
age plane and zci as the virtual camera. zc3 is
shown in yellow.

x

z
COP

p0
(x, z)

z0

Image
Plane

P0

Pnear b(z)

Znear Zfar

Pfar

pnear

(c) Curved Camera Model. Parameterized by
a boundary curve b(z) for z ∈ [Znear,Z f ar]. A
scene point (x, z) is projected onto the near
plane Pnear = b(Znear) at (pnear,Znear), and
then onto the image plane at (p0, z0).

Original Linear Perspective Piecewise Linear Curved Paths

(d) Comparison of using different camera models, in a 3D scene inspired by Burleigh et al. [BPR18]. In this example, our aim is to scale up the bust while
keeping the couches visible. Using linear perspective, the only way is to zoom in crop, which cuts out part of the couch. Using the piecewise linear camera
model, we divide the scene into three zones (yellow, green, non-colored) and scale each zone separately. However, this introduces a seam at the zone boundary
between the non-colored and green zone (see red circles). Using curved camera rays, we achieve a smoother transition of scale between zones and removes
the seams (see green circles). In the last two images, pixels that are not in the original photo are colored in cyan.

Figure 1: Camera Models

x′ =
zi−1 − zci

z− zci
x (8)

=
zi−1 − (zi−1 −

Pi−1(zi−zi−1)
Pi−Pi−1

)

z− (zi−1 −
Pi−1(zi−zi−1)

Pi−Pi−1
)

x (9)

=

Pi−1(zi−zi−1)
Pi−Pi−1

z− zi−1 +
Pi−1(zi−zi−1)

Pi−Pi−1

x (10)

=
Pi−1(zi − zi−1)

(Pi −Pi−1)(z− zi−1)+Pi−1(zi − zi−1)
x (11)

=
Pi−1

z−zi−1
zi−zi−1

(Pi −Pi−1)+Pi−1
x (12)

=
Pi−1

z−zi−1
zi−zi−1

Pi +(1− z−zi−1
zi−zi−1

)Pi−1
x (13)

=
Pi−1

z−zi−1
zi−zi−1

Pi +
zi−z

zi−zi−1
Pi−1

x (14)

The denominator z−zi−1
zi−zi−1

Pi +
zi−z

zi−zi−1
Pi−1 is just a linear interpola-

tion between the zone boundary endpoints at Pi−1 and Pi. In fact,
the denominator is equal to the boundary point b(z) at (x,z).

In other words, we can rewrite Equation 14 and 6 as:

x′ =
Pi−1
b(z)

x (15)

(x′,z′) is the projection of (x,z) to plane Pi−1. Following the
pseudo-code, in the next iteration, we project (x′,z′) to Pi−2. Let
the projected point onto Pi−2 be (x′′,z′′). Then, using Equation 14:

x′′ =
Pi−2
b(z′)

x′ (16)

=
Pi−2

b(zi−1)
x′ (17)

=
Pi−2
Pi−1

x′ (18)

z′′ = zi−2 (19)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

S. J. Liu, M. Agrawala, S. DiVerdi & A. Hertzmann / ZoomShop: Depth-Aware Editing of Photographic Composition (Supplemental Material)

Figure 2: Piecewise Linear: Pseudo-code for projecting a point
(x,z) iteratively onto the image plane P0.

where b(zi−1) = Pi−1 because (x′,z′) is the projected point on
plane Pi−1, and the boundary at z′ = zi−1 is precisely Pi−1.

By the same logic, in subsequent iterations, when projecting
(x j,z j) at plane Pj onto Pj−1, the scale factor for x j is Pj−1

b(z j)
=

Pj−1
Pj

.
Thus, the closed form solution for projecting (x,z) to the image
plane P0 is:

p0 =
P0
P1

P1
P2

...
Pi−2
Pi−1

Pi−1
b(z)

x (20)

=
P0

b(z)
x (21)

where p0 is the projected (world) coordinate of x onto image plane
at z0.

The normalized image coordinates u0 ∈ [−1,1] of the projection
is:

u0 =
1
P0

P0
b(z)

x (22)

=
x

b(z)
(23)

where P0 is the half-width of the image plane in world space.

Another way to interpret this piecewise linear model is in terms
of light paths. In a conventional pinhole camera model, light fol-
lows a straight line from a scene point to the camera’s focal center
and intersects the image plane. In the piecewise linear model, a
light path from a scene point follows a sequence of straight lines,
bending at each depth zone boundary (Figure 1b).

This geometric interpretation of light paths can be extended to
the other camera models as well. For all camera models in our
framework, the light paths follow the shape of b(z), i.e., for a
scene point at position (x0,y0,z0), the light path is a curve given
by f (z) = (x0

b(z0)
b(z), y0

λb(z0)
b(z),z), where λ = H/W is the image

aspect ratio.

A.2: Curved Paths

We can generalize the piecewise linear model to a curved model
(Figure 1c). In this generalized form, camera paths are no longer

piecewise linear, but general curves: each light path is a scaled ver-
sion of b(z).

Equation 1 still applies to the general view boundary curve. In-
stead of a finite number of piecewise linear depth zones defined by
a piecewise linear b(z), we now have a curved b(z), which is equiv-
alent to an infinite number of piecewise linear depth slices, where
each slice is infinitesimally thin.

In this curved model, the nearest depth plane (before the image
plane) of the scene is Pnear = b(Znear), as shown in Figure 1c. Given
any scene point (x,z), the projected point onto Pnear, is:

pnear =
Pnear

b(z)
x (24)

Next, the projection from (pnear,Znear) onto the image plane P0
is just conventional linear perspective:

p0 =
f

znear
pnear (25)

=
z0

znear
pnear (26)

=
z0

znear

Pnear

b(z)
x (27)

= (z0
Pnear

znear
)

x
b(z)

(28)

= P0
x

b(z)
(29)

where P0 is the half-width of the image plane in world space. We
can convert p0 from world coordinates to normalized image coor-
dinates ux ∈ [−1,1]:

ux =
p0
P0

(30)

=
x

b(z)
(31)

A.3: Discontinuous Paths

We can further generalize the continuous model to a discontinu-
ous one. Figure 3 shows a piecewise discontinuous model, where
camera paths follow discontinuous lines. We show that Equation 1
holds even if b(z) is discontinuous.

For piecewise discontinuous paths, we can define two half-
widths P+

i ,P−
i for each depth plane:

b(z) =
z− zi−1
zi − zi−1

P+
i +

zi − z
zi − zi−1

P−
i−1, where zi−1 ≤ z < zi (32)

When P+
i ̸= P−

i , a discontinuity occurs in the camera paths through
this point. See Figure 3 for an illustration. We can imagine an in-
finitesimally thin depth zone at each zi,1 ≤ i ≤ N, so:

p0 =
1

P+
0
....

P+
i−1

P−
i

P−
i

P+
i

P+
i

b(z)
x (33)

which converts to Equation 1 in image coordinates.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

S. J. Liu, M. Agrawala, S. DiVerdi & A. Hertzmann / ZoomShop: Depth-Aware Editing of Photographic Composition (Supplemental Material)

z
zi+1zi

zi-1

Zone i+1Zone iZone i-1

b(z)

pi

...

...

pi-1

P-i

P+
i

P+
i-1P-

i-1

(x, z)

P-
i+1

Figure 3: Illustration of discontinuous piecewise-linear camera
paths. We break off each half-width depth plane Pi into two parts,
P−

i and P+
i . In this example, a discontinuity occurs at zi because

P−
i ̸= P+

i . b(z) is continuous at zi−1 because P−
i−1 = P+

i−1.

Appendix B: Removing Artifacts

Scaling depth ranges can lead to disocclusions, pixel stretching, or
shearing. For example, the teaser figure shows both disoccluded
regions (behind the left tree branch) and sheared pixels on the lake
in cyan between the yellow and green depth zones. Both of these
issues introduce artifacts, which we address with two heuristics.

In the first heuristic, we check the amount of shearing of each
pixel in the final image. If a pixel is significantly sheared, it most
likely saddles between two different depths that were scaled dif-
ferently. This may lead to visible artifacts and/or disocclusion. To
check for shearing, in the fragment shader, we check the dot prod-

uct between vectors du⃗
dx =

[du
dx

dv
dx

]T
and du⃗

dy =
[

du
dy

dv
dy

]T
. If the

vectors are orthogonal, then there’s no shear. But if the dot prod-
uct is greater than some threshold τshear, then we make the pixel
transparent:

du⃗
dx

· du⃗
dy

> τshear (34)

We use τshear = 0.53−0.9 in our results.

In the second heuristic, we check for the amount of non-uniform
scaling (stretching). A pixel that’s stretched significantly in the x-
direction, again, likely lies between two different depths that were
scaled differently, and thus introduces disocclusion or artifacts. To
check for non-uniform scaling, in the fragment shader, we compute
the ratio of || du⃗

dx || and || du⃗
dy ||. A ratio of 1 means uniform scaling;

any deviation means the scaling is non-uniform. If the ratio is less
than some threshold τnonuniform, then we make the pixel transparent:

|| du⃗
dx ||

|| du⃗
dy ||

< τnonuniform (35)

We used τnonuniform = 0.2−0.3 in our results, and also apply the
same check for the y-direction, i.e., || du⃗

dy ||/||
du⃗
dx ||.

Appendix C: Additional Translation Results

In Figure 4, scaling up the birds pushed the left rock out of view.
In addition to translation constraints on the rock, we added an ad-
ditional constraint on the float to keep it fixed in place. The out-
put shows the rock translated along with some connected water in
front. In Figure 5, compressing the depth in the valley pushed the
two side rocks partially out of view. Under the shown constraints,
ZoomShop smoothly translates the rocks towards the center as well
some ground in front.

References
[BGKS17] BADKI, ABHISHEK, GALLO, ORAZIO, KAUTZ, JAN, and SEN,

PRADEEP. “Computational Zoom: A Framework for Post-Capture Image
Composition”. ACM Trans. Graph. 36.4 (July 2017). ISSN: 0730-0301.
DOI: 10.1145/3072959.3073687 1.

[BPR18] BURLEIGH, ALISTAIR, PEPPERELL, ROBERT, and RUTA,
NICOLE. “Natural perspective: Mapping visual space with art and sci-
ence”. Vision 2.2 (2018), 21 2.

[Tre20] TREGASKIS, WADE. Yosemite Valley. https : / / www .
flickr.com/photos/wadetregaskis/50156486633. Mod-
ified and included with permission. Original photo licensed under CC
BY-NC 2.0. Feb. 2020 5.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/3072959.3073687
https://www.flickr.com/photos/wadetregaskis/50156486633
https://www.flickr.com/photos/wadetregaskis/50156486633
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/licenses/by-nc/2.0/

S. J. Liu, M. Agrawala, S. DiVerdi & A. Hertzmann / ZoomShop: Depth-Aware Editing of Photographic Composition (Supplemental Material)

da b c

Figure 4: Birds. Goal: Scale up birds while also keeping the left side rock visible. Magenta and blue rectangles are source-destination pairs
which are input to our translation optimization. Each pair of rectangles has the same size; magenta overlays blue rectangles. (a) Original
photo. (b) Scaled up birds. (c) ZoomShop output (top: translation map). (d) ZoomShop with inpainting (automatic).

da b c

Figure 5: Yosemite [Tre20]. Goal: Compress depth in valley while keeping two side rocks in view. Magenta and blue rectangles are source-
destination pairs which are input to our translation optimization. (a) Original photo. (b) Compressed valley. (c) ZoomShop output (top:
translation map). (d) ZoomShop with inpainting (top: automatic, bottom: manual guidance)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

