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Figure 1. In 360◦ video, viewers can look anywhere at any time. In the opening scene of Invasion!, a rabbit emerges from a cave (a). In sequential 
playback, a viewer looking at the cave (green box) will see the rabbit emerge, whereas a viewer not looking at the cave (red box) will miss this event. 
We provide tools to guarantee that viewers see the region of interest (ROI) at the correct timecode to witness the event (b). We introduce the concept 
of gated clips, where playback only continues if the viewer satisfies a condition related to the ROI (green boxes). Otherwise, our player loops the video 
using view-dependent video textures (red boxes). 

ABSTRACT 
A major concern for filmmakers creating 360◦ video is ensur-
ing that the viewer does not miss important narrative elements 
because they are looking in the wrong direction. This paper 
introduces gated clips which do not play the video past a gate 
time until a filmmaker-defined viewer gaze condition is met, 
such as looking at a specific region of interest (ROI). Until 
the condition is met, we seamlessly loop video playback using 
view-dependent video textures, a new variant of standard 
video textures that adapt the looping behavior to the portion of 
the scene that is within the viewer’s field of view. We use our 
desktop GUI to edit live action and computer animated 360◦ 
videos. In a user study with casual viewers, participants prefer 
our looping videos over the standard versions and are able to 
successfully see all of the looping videos’ ROIs without fear 
of missing important narrative content. 
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INTRODUCTION 
The medium of 360◦ video provides new artistic opportuni-
ties for filmmakers, allowing them to create videos with a 
greater sense of immersion and engagement than with conven-
tional video. It also presents new challenges. In traditional 
cinematography, the director has full control over the camera 
orientation, field of view, zoom, and focus at all times. Tra-
ditional filmmakers use these controls to drive the narrative, 
ensuring that the viewer sees each important story element at 
the right time. With 360◦ videos, however, directors no longer 
have this control, and viewers can look in any direction at any 
time. As a result, viewers may miss important story content 
and become lost or confused as the story progresses. 

For example, in the animated short “Invasion!” [7], the story 
begins with an establishing shot placing the viewer in the mid-
dle of an icy lake (Figure 1). Initially, the viewer is given time 
to look around and become familiar with their surroundings. 
A rabbit eventually emerges from a small cave. However, if 
the viewer is not looking at the cave entrance when the rabbit 
emerges, they will not see the rabbit, or what it does next. 
A second type of example is in the “Stranger Things: The 
VR Experience” [33] short film. As the tension rises, the 
viewer answers the phone, and is told to turn around. Then, 
a monster attacks from the direction opposite the phone. If 
the viewer does not turn around fast enough, they miss the 
monster attacking. A third type of example occurs in “Wild: 
The Experience” [14], where the viewer is placed between a 
hiker and an empty rock, on which a “ghost” appears only if 
the viewer is not looking at the rock. The hiker and the sound 
of her breathing is intended to get the viewer’s attention away 
from the rock, so that the ghost can appear outside the viewer’s 
field of view. However, if the viewer never looks away from 
the rock, the video player will reach the end of the video with-
out the ghost ever appearing. Although the directors of these 
examples include passive gaze guidance techniques, such as 
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audio cues, to encourage the viewer to look in a particular 
direction, none of the techniques are foolproof. 

This paper proposes a new filmmaking technique we call gated 
clips, designed to ensure that a viewer sees key elements 
of the narrative in a 360◦ video. Using our technique, the 
filmmaker can author a gate which ensures that playback may 
only proceed past a gate time only if a filmmaker-defined 
viewer gaze condition is met, such as looking at a specific 
region of interest (ROI). Viewing such gated clips requires a 
new kind of video player that seamlessly loops the 360◦ video 
playback until the gate condition is met. 

For example, in the “Invasion!” short, we can place a gate 
just before the rabbit emerges from the cave and treat the gate 
ROI as the cave entrance. Our video player then seamlessly 
loops the video playback until the viewer is looking at the cave 
entrance when the rabbit is emerging and only proceeds past 
the gate at that time. Gated clips also enable new kinds of shots 
where action proceeds only when the viewer is looking away, 
e.g., in “Wild,” our video player can ensure that the viewer has 
looked away from the rock before the ghost appears outside 
their view, and then that they have looked back at the rock to 
see the ghost. 

In order to create gated clips, we introduce view-dependent 
video textures for 360◦ video. Our approach is based on video 
textures [40], a generalization of video looping, to allow the 
360◦ video to seamlessly jump back to earlier frames, so that 
the viewer will not notice the looping. Conventional video 
texture algorithms only allow transitions between frames when 
the change is imperceptible anywhere in the frame. However, 
this criteria is too conservative for 360◦ video, where the entire 
view sphere is encoded in an equirectangular frame, since 
the change only needs to be imperceptible in the viewer’s 
field of view (FOV). Our view-dependent video textures relax 
this constraint. We introduce a novel graph cut algorithm to 
convert a standard 360◦ video clip into a gated clip with such 
view-dependent video textures. 

To prototype these ideas, we present a user interface for edit-
ing 360◦ videos with gated clips. Our interface is built on a 
conventional timeline interface, but with special shot types for 
gated clips. We demonstrate results on five different videos, 
four of them professionally produced and not intended for 
use with our technique. In our user study, 9 out of 11 users 
preferred videos with gating. 

RELATED WORK 
Our approach builds on three main areas of related work. 

Interactive and looping video 
Forms of interactive (or dynamic) video, where the video 
playback changes depending on viewer actions, have been 
explored for several decades. The first methods, including 
Movie-maps [31] and QuickTimeVR [11], allowed navigation 
in real and virtual environments, whereas some arcade video 
games, such as Space Ace [2] and Dragon’s Lair [1], used 
interactive video for branching narratives. 

Our method uses video textures to create video that loops 
seamlessly until certain conditions are met. Video textures 

were introduced by Schödl et al. [40], who demonstrated find-
ing seamless non-repeating paths through short clips to create 
the experience of endlessly playing videos, as well as to drive 
video in different ways. This technique has been extended 
to loop video panoramas captured by a panning camera [3], 
motion capture videos of humans [15], videos orbiting around 
a moving object [26], and responsively looping video based 
on user interactions [23]. 

In order to increase the number of possibilities for seamless 
transition in a video texture, some methods have segmented the 
video into independently-moving regions [22,40], and then cre-
ated separate video textures for each such region. In contrast, 
we introduce view-dependent arcs, specifically for applying 
video textures to 360◦ video. Our approach is complemen-
tary to segmentation; our method produces video textures by 
exploiting viewers’ limited FOV in 360◦ video, whereas seg-
mentation loops the entire scene by looping and compositing 
different moving parts of the scene. 

Motion segmentation methods are also used in the construc-
tion of cinemagraphs [4, 5, 25, 27, 28], photograph-like im-
ages with some moving elements. These methods create 
pixelwise textures that are not appropriate for our structured 
scenes. Our view-dependent arcs are also akin to Chenney and 
Forsyth’s [12] view-dependent approach to accelerating physi-
cal simulation, by eliding computation for scene elements not 
in view. 

Gaze guidance 
While 360◦ video provides a new dimension of viewer inter-
activity and agency, this freedom is accompanied by users 
struggling with not knowing where to look [35, 45]. Methods 
for guiding or forcing the viewer to look at a particular region 
of interest (ROI) are called gaze guidance. Our approach is 
complementary to gaze guidance, and we expect our method 
to be used together with gaze guidance techniques, such as 
audio cues to attract the viewer’s attention. For a survey and 
taxonomy of gaze guidance techniques, see Nielsen et al. [34]. 

Subtle gaze guidance techniques provide visual and audio cues 
that attempt to guide the viewer’s gaze without breaking im-
mersion. This is particularly important for narrative content 
where a filmmaker wishes to keep the viewer fully absorbed 
by the story. Conventional filmmakers aggressively use subtle 
cues to guide the viewer’s attention, and these effects are also 
being explored by 360◦ filmmakers and researchers [38, 42]. 
Several techniques apply subtle gaze guidance to normal field 
of view (FOV) video, i.e., on a desktop computer monitor. 
These methods include gradually blurring non-ROI parts of 
the image [21], applying shallow depth of field [44], modu-
lating the scene’s visual saliency [46], and presenting a small 
flickering distractor in the viewer’s peripheral vision in the 
direction of the ROI [6]. For in-headset VR, subtle techniques 
in the literature include inducing optical flow in peripheral 
vision [9] and flickering elements in peripheral vision [18]. 
Grogorick et al. [19] perform an evaluation comparing differ-
ent subtle guidance techniques. Each of these techniques finds 
some success in guiding viewer gaze, but none guarantee that 
viewers will see critical moments. 
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Several methods actively control the viewer’s gaze direction 
to focus on a ROI; depending on how this is implemented, it 
can substantially break immersion. This includes directly ro-
tating the scene [29] or rotating the user in a motorized swivel 
chair [20]. Attempts to hide this rotation include applying 
very slow rotations [43], or applying gains to the user’s own 
rotation [48]. Reorienting the scene during cuts [36] maintains 
immersion but can only be applied at cuts. A picture-in-picture 
visualization may also be shown of the ROI so that viewers 
always see important content [30]. 

View-dependent 360◦ video and animation 
Our work is inspired by several short 360◦ video and ani-
mations that use different kinds of view-dependent playback. 
Several animated shorts use forms of gating to pause the ac-
tion (without pausing the motion or audio), either waiting for 
the viewer to look at something, or to look away from some-
thing, including “Buggy Night,” “Piggy,” and “The Simpsons: 
Planet of the Couches,” from Google Spotlight Stories1 [17]. 
In “Buggy Night” and “Piggy,” the viewer is essentially part 
of the story, either scaring the flies by looking at them in 
“Buggy Night,” or catching Piggy stealing a cake. The end-
ing of the “Batman: Arkham VR” [37] video game uses an 
offscreen action effect to simulate the player’s hallucinations. 
Disney’s “Cycles” [47] animation fades out the lighting and 
action whenever the viewer looks away. Each of these exam-
ples is animated, and, presumably, carefully hand-authored to 
run in real-time rendering engines; whereas our method can 
work with live action video with comparatively lightweight 
authoring effort. 

1These shorts are viewable in the Google Spotlight Stories app for 
iOS and Android. On YouTube, they do not have view-dependent 
playback. “Piggy” also has a separate app in the Steam Store. 

Figure 2. Our prototype desktop video editing inter-
face with a gated clip. The upper left pane shows a 
preview of the headset FOV, which is output live to 
the Oculus Rift. The upper right pane shows the full 
equirectangular view and marks the current headset 
FOV (pink border). The video timeline on the bottom 
acts as a conventional video editor, with each dark 
blue rectangle representing a clip. The first clip is 
a gated clip (white border). Filmmakers specify a 
gate timecode (red vertical line on timeline), a ROI 
(green box) on the equirectangular frame, as well as 
other parameters shown in the settings box below the 
clip. View-dependent arcs are shown as backward 
arcs (red arrows) on top of the gated clip. In this ex-
ample, the ROI is the aliens, and the gate condition is 
a lookat gate, i.e., playback may not advance past the 
gate timecode unless the viewer is looking at the ROI. 
To avoid static loops and reduce arcs with visual arti-
facts, the filmmaker can set thresholds on the length 
of arcs and on the perceptual difference of arc transi-
tions. After setting all thresholds, the filmmaker can 
generate the view-dependent arcs by loading in (pre-
processed) arc costs and applying the gate. To have 
viewers jump to the gate timecode as soon as they see 
the ROI, the filmmaker can also enable forward arcs 
that are under a perceptual threshold. Finally, the 
filmmaker can choose to cross-fade the audio during 
loop transitions or choose to mute the audio entirely. 

We are aware of only one example using live action video: 
“Wild: The Experience” [14] from Felix & Paul Studios, de-
scribed in the introduction. In the original short, a character 
may appear and disappear after certain times, depending on 
the viewer’s head movements. The video plays for a fixed 
duration regardless; there is no gating, and thus no guarantee 
that the viewer will see significant events. 

GATED CLIPS 
As described in the Introduction, it is easy for viewers to miss 
important moments in 360◦ experiences; making sure that 
the viewer sees the right things is a common concern among 
the 360◦ filmmakers we have spoken with. Filmmakers are 
accustomed to controlling the viewer’s gaze with shot framing, 
zoom, depth of field, and camera movements; none of these 
techniques are available in 360◦ video, and, worse, the viewer 
can be looking in away when an important moment starts. 

To address this problem, we introduce the gated clip (Figures 1 
and 2). A gated clip is a portion of a video that loops until the 
viewer satisfies some viewing condition, such as looking in a 
specific direction. A gated clip is comprised of the following 
elements: The gate timecode is a specific frame in the clip. 
The video may only progress beyond the gate timecode when 
a gate condition is met. We use the term timecode to describe 
a frame index into the video timeline, and distinguish such 
timecodes from playback time, which may differ on each 
viewing due to looping. 

Types of gates 
We consider two types of gate conditions: (1) A lookat gate 
specifies that the viewer must see a specific region of interest 
(ROI) at the gate timecode for the video playback to proceed, 
i.e., that the ROI is within the viewer’s field of view (Figures 1 
and 2). (2) An offscreen gate is the inverse condition, i.e. 
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Figure 3. Discretized view directions. This figure visualizes the FOVs 
of |V| = 6 discretized view directions evenly spaced around the equator 
on an equirectangular frame from an example video. In our implemen-
tation, we used |V| = 40. The horizontal FOV of each discretized view 
matches the horizontal FOV of the Oculus Rift and covers the full verti-
cal range of the video. 

it specifies that the viewer must not see the ROI at the gate 
timecode for video playback to proceed. 

We give examples of three narrative use cases for these two 
types of gate conditions. A common trope in 360◦ filmmaking, 
such as in “Invasion!,” (see Introduction section) is that the 
viewer is given a considerable amount of time to become 
familiar with a new environment before the first main action 
begins; this is akin to an establishing shot in conventional 
filmmaking. In such cases, authors could use a lookat gate 
when the viewer is initially placed in a new environment, with 
the gate timecode and ROI located at the time and spatial 
location where the main action begins. In the “Invasion!” 
example, the gate timecode would be placed at the time the 
rabbit first appears, and the ROI would be placed at the cave 
entrance. Another narrative use case is when the viewer is 
supposed to move their head in the middle of the story. For 
example, in “Stranger Things,” the viewer is instructed to 
turn their head around in order to see the monster at the end 
of the hallway. In such cases, the author could again place 
a lookat gate right before the next action starts and set the 
ROI on the new target location. In this example, the ROI 
would be on the monster, and the gate timecode would be right 
before the monster attacks. Finally, for surprising entrances 
and disappearances, the author could use offscreen gates to 
ensure that the viewer does not see the actual appearance or 
disappearance. For example, in the “Wild” example, the author 
could place an offscreen gate right before the ghost appears 
and mark the rock as the ROI. That way, the viewer must look 
away for the ghost to appear offscreen, and then the viewer 
could turn to look at the rock and see the ghost. 

VIEW-DEPENDENT VIDEO TEXTURES 
Simply looping the video until the gate condition is met would 
often break immersion, because of ghosting—objects appear-
ing, disappearing, or jumping—in the transition from the last 
frame of the loop to the first frame. Instead, we create seam-
lessly looping gated clips by generalizing the approach of 
video textures [40] to handle 360◦ video and gating. 

A video texture is a video clip that can be played back end-
lessly by adding seamless transitions between non-sequential 

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t
Figure 4. Visualization of view-dependent video textures for a gated clip. 
Each row corresponds to one of the discretized viewing directions (here 
we show the first five views only). The gate timecode is t = T , and v = 
2 is the only view that satisfies the gate condition (green vertical line); 
other views do not (red vertical lines). Red arrows show the computed 
backward arcs. Tick marks correspond to frames, and purple ones are 
frames from which there are seamless backward arcs, i.e. arcs in which 
the transition frames have low perceptual difference. 

frames. Each transition occurs along an arc (t, t 0), which tran-
sitions playback from frame t to frame t 0, over a user-specified 
cross-dissolve interval (our implementation uses a fixed 0.5 
second cross-dissolve). By selecting arcs carefully, we can 
create seamless playback, in which ghosting is minimized. 
There are three types of arcs: sequential arcs (t, t + 1), used 
in normal playback; backward arcs (t, t 0), t 0 < t, and forward 
arcs (t, t 0), t 0 > t + 1. 

Constructing video textures normally involves finding seam-
less arcs (t, t 0) between non-sequential frames, such that cross-
dissolving the video from frame t to frame t 0 is imperceptible 
to the viewer. The conventional approach is to measure some 
perceptual distance metric between the two frames. However, 
measuring the image distance for the entire 360◦ equirectan-
gular image is too conservative, because viewers only see a 
small portion of the scene at any time; for example, typical 
VR headsets only have roughly an 80◦ horizontal field of view. 

The core idea of view-dependent video textures is the use of 
view-dependent arcs. View-dependent arcs allow specific run-
time transitions as long as the viewer is looking in a particular 
range of directions. These transitions are selected to minimize 
perceptual difference within the field of view. Specifically, we 
discretize the view-sphere with a fixed set of directions v ∈ V. 
A view-dependent arc is then represented as a triplet (v, t, t 0) 
and is computed based on the pixels visible within v. 

We chose a discretization of |V| = 40 views. The views are 
equally-spaced around the equator (Figures 3 and 4). In our 
test videos, there is more motion around the equator and virtu-
ally no motion near the poles, so we chose the view FOV to 
have higher granularity of coverage in the horizontal direction 
than in the vertical direction. Thus, we set the horizontal FOV 
of each view to match the horizontal FOV of the Oculus Rift 
headset and the vertical FOV to cover the video’s full vertical 
height (w = 80.65◦ , h = 180◦). The FOVs of adjacent views 
overlap by 71.65◦ , with their centers 9◦ apart. Additional 
views could easily be added to the discretization, or coverage 
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Figure 5. One naive solution is to find one loop (i.e., one backward tran-
sition arc) for each view that does not satisfy the gate condition. In this 
example, the gate timecode is t = T , and the view v = 2 satisfies the gate 
condition. All other views include one backward arc forming a loop. The 
thick black line shows an example viewer’s head trajectory through the 
views over time (slowly turning their head from v = 4 to v = 0). Unfor-
tunately the viewer can still get past the gate time through another view 
v , 2 via certain head motions, so the naive solution does not provide a 
guarantee that the gate condition is met before playback progresses. 

areas expanded as needed. See Discussion Section for more 
details on the trade-off between the number of discrete views 
and the FOV size of each view. 

GENERATING VIEW-DEPENDENT TEXTURES 
Given a user-specified gate and an existing video clip, we 
wish to generate a view-dependent texture that satisfies the 
following properties: (1) The video proceeds past the gate 
timecode only if the viewer satisfies the gate condition. (2) 
The gate timecode is reachable if the viewer is looking in 
a direction that satisfies the gate condition (i.e., for lookat 
gates, in a direction where ROI is visible; for offscreen gates, 
in a direction where ROI is not visible). (3) The transitions 
taken along arcs minimize or eliminate ghosting. (4) All arcs 
satisfy user-set thresholds on the length of the arcs and on the 
perceptual difference of arc transitions. In order to discourage 
repetitious or static loops, the arc length threshold requires 
all backward arcs to be longer than a minimum threshold 
duration. To minimize ghosting and visual artifacts, our tool 
allows authors to specify a perceptual threshold, which is the 
highest perceptual difference of frames that arcs can have in 
order to be considered seamless arcs. 

Given these constraints, our goal is to specify the playback 
behavior for each combination of frame t and discretized view 
direction v. There are only two possibilities from each (v, t): 
either play forward to t + 1, or transition backward to some 
previous timecode t 0 < t. Our algorithm outputs the action 
(play forward to next frame or transition backward to an earlier 
frame) to take from each (v, t). Then, during playback, our 
player looks up the run-time frame t and the nearest discretized 
v, and follows the selected behavior at (v, t). 

A naive solution is to create a separate video loop (i.e., one 
backward transition arc) for each view direction, except for 
those that satisfy the gate condition. That is, for each view 
direction v ∈ V, we could independently search for a back-

Figure 6. Another naive solution is to find one loop (i.e. one backward 
transition arc) for each view that does not satisfy the gate condition, such 
that all the arcs originate at the same timecode. In this example, the 
gate timecode is t = T , and the view v = 2 satisfies the gate condition. 
Unfortunately, if the originating timecode for all arcs does not equal the 
gate timecode T , then the viewer can still get past the gate time through 
a view v , 2, as shown by the thick black line, which gives an example of 
viewer’s head trajectory (slowly turning their head from v = 4 to v = 0) 
that gets past the gate without satisfying the gate condition. 

ward arc (v, t, t 0) that minimizes ghosting. Unfortunately, this 
approach does not guarantee that the viewer satisfies the gate 
condition. As illustrated in Figure 5, it is possible for viewers 
to move their heads in a way that allows them to pass the gate 
timecode through a view that does not satisfy the gate con-
dition. We also considered a version of this approach which 
finds a single timecode t for all backward arcs (with indepen-
dent destination timecodes t 0), but this approach similarly does 
not guarantee that viewers satisfy the gate condition. If t is 
earlier than the gate timecode, viewers can still get past the 
gate timecode T through a view that does not satisfy the gate 
condition (Figure 6). Requiring t to occur at the gate timecode 
is too restrictive to work for general videos. For example, if a 
view (not satisfying the gate condition) is static for all frames 
t < T , but an object in the view moved at t = T , then the view 
would not have any seamless backward arcs originating at 
t = T , even though there are many pairs of frames before T 
that can form seamless arcs. 

Graph Cut Formulation 
We formulate the problem in terms of graph theory, specifically 
an s-t graph cut [8, 16, 41]. The graph construction represents 
playback as a state machine, but with some modifications, so 
that a minimal graph cut produces a solution to our problem 
of generating view-dependent video textures for gated clips. 

The graph includes one node (v, t) for each pair of view di-
rection and frame in the clip, from the start frame 0 to frame 
T + 1, which is the frame immediately after the gate timecode. 
Let v ∈ H be the set of views that satisfy the gate condition. 
For lookat gates, H is the set of views in which the ROI is 
visible; for offscreen gates, H is the set of views in which the 
ROI is not visible. We call (v,T ), where v ∈ H, gate nodes. 

Graph Partition. Our goal is to partition the graph into two 
parts, a “safe zone,” which the viewer must stay within before 
they satisfy the gate condition, and an “unsafe zone” that the 
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Figure 7. (a) A single forward edge between consecutive nodes (v, t) → 
(v, t + 1) represents normal video playback of sequential frames but does 
not model head rotation. (b) Adding forward edges to adjacent view-
ing directions models head rotation below some velocity—i.e. (v, t) → 
(v0 , t + 1), for all v0 ∈ N(v). But cutting these edges corresponds to disal-
lowing some head motions, which we cannot control. (c) A buffer node 
(v, t)B (cyan) creates one edge (black) that can be cut (to remove the video 
frame advance for this view), while infinite-weight edges (cyan) cannot 
be cut (to properly model free user head rotation). The edge weight w is 
designed to strongly prefer arcs with perceptual error below the user-set 
threshold. More details of how w is determined is in the Appendix. 

viewer must not visit before the gate condition is met. The 
safe zone must include all nodes at the starting frame (v,0) 
as well as the gate nodes, because the viewer can start in any 
view direction, and the viewer must be able to visit the gate 
nodes in order to satisfy the gate condition. The unsafe zone 
must include nodes (v, T +1) for all v, because viewers should 
not visit the frame immediately after the gate timecode if the 
gate condition has not been satisfied. With this construction, 
the viewer can exit the safe zone of the graph only by passing 
through a gate node. Otherwise, for boundary nodes in the 
safe zone that border the unsafe zone, our graph cut algorithm 
finds seamless backward arcs from which to transition back in 
time, so that the viewer does not enter the unsafe zone. If the 
viewer is at a node in the unsafe zone before the gate condition 
is met, they might see ghosting and/or pass through the gate 
timecode in a view v < H. 

Accounting for Head Motion. At any instant, the viewer 
may rotate their head. Hence, from any node (v, t), the view 
direction at the next time instant may be from a neighbor 
set N(v), determined as a function of the field of view, the 
view discretization, and how fast viewers typically rotate their 
heads. Based on the work of Bussone [10], we assume a 
typical maximum head velocity movement of 9.03 rad/s. For 
|V| = 40 and 30fps video, this means that viewers can move 
across n = 2 adjacent views in either direction over the course 
of one frame interval, and therefore the neighbor set N(v), of 
view v contains 5 views including v. 

One might imagine representing sequential playback with al-
lowance for head motion by including an edge from each 
node (v, t) → (v0 , t + 1), for all v0 ∈ N(v). However, this ap-
proach would allow the graph cut algorithm to cut some of 
these edges and not others, which would correspond to allow-
ing some head movements and not others. Since we cannot 
control the viewer’s head movements, we cannot use such a 
representation. Hence, we introduce buffer nodes (v, t)B be-
tween consecutive nodes (Figure 7). From each node (v, t), we 
insert an edge to its buffer node (v, t)B, and, from the buffer 
node, we add edges to the subsequent nodes (v0 , t + 1) for 
v0 ∈ N(v). The edges (v, t) → (v, t)B are called buffer edges. 

Figure 8. Our graph representation of a gated clip. The gate frame 
is t = T and the views that satisfy the gate condition are H = {1,2}. 
We add buffer nodes (cyan) between consecutive frame nodes. There 
are infinite-weighted edges from each buffer node to possible views that 
viewers might see at the next frame. In this figure, n = 1 for the num-
ber of adjacent views that viewers can visit in one frame, but in our 
result videos we used n = 2. Buffer edges connect each frame node to 
its buffer node. Buffer edges of {(v, t)|v ∈ H, t < T } have infinite weight, 
while buffer edges of gate notes {(v,T )|v ∈ H} have a weight of 0. Source 
node s is connected to the starting frame nodes t = 0 in each view, while 
terminal node t is connected to all nodes at t = T + 1. After performing 
graph cut, the initial nodes and gate nodes (green) are partitioned from 
end nodes (red). 

Cutting a buffer edge indicates that, in the output video texture, 
the corresponding sequential arc (v, t) → (v, t + 1) is omitted 
from the video texture, and that a backward arc must be taken 
whenever (v, t) is reached. 

Edge Weights. The weight of a buffer edge (v, t) → (v, t)B 
depends on the best backward arc available from the node 
(v, t), since some backward arcs may introduce more ghosting 
than others. The buffer edge weight is designed to strongly 
prefer arcs with perceptual error below the user-set threshold. 
Details of how we determine buffer edge weights are given in 
the Appendix. Edges connecting buffer nodes to subsequent 
nodes (v, t)B → (v0 , t + 1) for v0 ∈ N(v) represent the set of 
views a viewer might transition into due to head movement. 
Since we cannot control viewer’s head motion, these edges 
should not be cut, so we assign them a weight of infinity. 

If the viewer is looking in a direction v ∈ H that satisfies the 
gate condition, they should be able to reach the gate node 
(v,T ). In other words, all nodes (v, t), where v ∈ H, t < T , 
should play forward (i.e., not traverse backward arcs). Thus, 
the buffer edges of these nodes should not be cut, so we set 
their weights to infinity. 

The s-t graph cut formulation involves a source node s, which 
we connect with infinite-weight edges to the nodes that must be 
in the safe zone, i.e., initial nodes (v,0) for all view directions 
v ∈ V. We do not explicitly connect s to gate nodes, because 
they are guaranteed to be partitioned into the safe zone due to 
the infinite-weight buffer edges (v, t) → (v, t)B,v ∈ H, t < T . 
The sink node t is connected with infinite-weight edges to 
all nodes (v,T + 1), which must be in the unsafe zone. The 
complete gated clip graph is shown in Figure 8. 

In order to perform the s-t graph cut, we need at least one 
buffer edge in each v ∈ H to have non-infinite weight, so 
we set buffer edge weights of gate nodes (v,T ) → (v,T )B 
to 0. Consequently, edges (v,T ) → (v, T )B are always cut for 
v ∈ H. Normally, cutting a buffer edge (v, t) → (v, t)B indicates 
that a backward arc must be taken whenever (v, t) is reached. 
However, when the viewer reaches one of the gate nodes (v,T ), 
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v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t

Figure 9. The graph cut algorithm may inadvertently create backward 
arcs (red arrows) into the “unsafe zone” when there are discontiguous 
cuts along a viewing direction. Our post-processing step replaces those 
backward arcs with new backward arcs (green arrows) that terminate in 
the “safe zone.” The safe zone includes the both gray and purple shaded 
regions. However, since the purple frames border the unsafe zone, it is 
possible for viewers to turn their head into the unsafe zone as the player 
transitions into a purple frame, so our heuristic looks for replacement 
arcs that end in the gray shaded area. 

where (v,T ) → (v,T )B is cut, we simply keep playing forward 
to pass the gate, instead of taking a backward arc. 

Properties of Cut. The graph-cut algorithm solves for the set 
of buffer edges to remove with minimum total cost, such that 
the sink node t is not reachable from the source node s. This 
partition corresponds to segmenting the graph into a safe zone, 
including the start nodes and the gate nodes, and an unsafe 
zone, which include paths that violate the gate condition. Our 
implementation uses the min-cut solver of Boykov and Kol-
mogorov [8] and takes an average of 0.14 seconds to compute 
the cut for the clips we have tested (Table 1). 

Postprocessing 
Once we run graph-cut on the graph, our video player extracts 
from the resulting partition a binary decision for each node: 
whether to (1) play forward sequentially from that frame or 
to (2) take a backward arc from that frame. If a buffer edge 
(v, t) → (v, t)B is not cut, the video player plays forward se-
quentially from (v, t). As discussed in the Edge Weights sec-
tion, the weight of a buffer edge (v, t) → (v, t)B depends on the 
best backward arc available from the node (v, t). So if a buffer 
edge (v, t) → (v, t)B is cut, then the video player traverses the 
best backward arc from (v, t). 

It is possible for our graph cut algorithm to cut edges and 
produce backward arcs that end in the unsafe zone, i.e., a node 
that the viewer is not meant to reach before satisfying the gate 
condition. As shown in Figure 9, when there are discontiguous 
cuts along a viewing direction, it is possible for some backward 
arcs in that view to end on a node which is partitioned into 
the unsafe zone. We use the following heuristic post-process 
to correct these cases. We first identify the origin timecode 
tC of the earliest backward arc along view direction v (tC = 
min{(v,t,t 0)} t). We are guaranteed that all nodes before this 
time are in the “safe zone.” Thus, we replace each backward 
arc (v, t, t 0) that ends after tC (t 0 > tC), with the best backward 
arc from (v, t) that ends before tC. This approach can produce 

Invasion! Stranger Things

Wild Lions

Murder Mystery

Figure 10. Stills from our example videos. The first four were 
professionally-created videos, not intended for use with gated clips. The 
fifth we shot for this project. 

video textures with some poor backward arcs; we highlight 
such poor backward arcs in the user interface, and the user 
may perform further adjustments to generate better results, 
i.e., re-run the algorithm with different parameters (e.g., gate 
timecode, ROI, arc length) . 

Forward Arcs to the Gate 
Our graph-cut algorithm creates backward arcs in views that 
do not satisfy the gate condition, i.e., v < H. If the viewer looks 
at a view v ∈ H, by default our player just plays normally until 
the viewer reaches the gate timecode. However, this may take 
some time, and the filmmaker may want the viewer to get to 
the gate timecode as soon as they look in the right direction. 
Thus, we provide filmmakers with the option to add forward 
arcs to views v that satisfy the gate condition. The forward 
arcs allow playback to jump directly to the gate when the 
viewer is in a view v ∈ H without forcing them to wait for 
the remaining duration of the gated clip. If the author selects 
this option, our system automatically adds forward arcs to all 
nodes (v, t),v ∈ H, t < T −0.5 sec for which the transition cost 
from (v, t) to (v,T − 0.5 sec) is below a user-set perceptual 
threshold. We set forward arcs to jump to 0.5 seconds before 
the gate timecode to allow the transition cross-dissolve to 
finish by the time the viewer gets to the gate. 

EXAMPLE VIDEOS 
We used our editing tool to add gated clips to five 360◦ videos 
(Figure 10). We selected a range of video genres and scenarios 
and varied our gate types to demonstrate a range of narrative 
use cases, detailed in Table 1. We created four videos (Inva-
sion!, Stranger Things, Wild, and Lions) based on existing, 
professional videos, and shot the fifth video (Murder Mystery) 
ourselves. Note that the professional videos were not shot 
with gating in mind; we added gating in order to demonstrate 
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our method. We cut each video down to one or two minutes in 
length. For each video we created three gated clips and made 
sure to place the gate at important story events. 

We authored audio manually for the gated clips. By default, 
we cross-dissolved the audio during transitions, just as we 
cross-dissolved the video; we used this approach for “Stranger 
Things,” “Wild,” and “Murder Mystery.” For “Lions,” the nar-
rator sometimes speaks during a gated clip. To avoid looping 
the narration, we played the audio normally (without transi-
tions), separate from the visual content which may be looping. 
If the gated clip audio ended before the viewer passed the 
gate, we paused the audio until the viewer did, after which we 
resumed audio with the next clip. For “Invasion!”, the origi-
nal soundtrack includes music; we found that audio dissolves 
were jarring, so we muted the audio entirely. 

Invasion! [7]. We added lookat gates to focus the user’s atten-
tion at three key moments: the rabbit’s entrance in the opening 
scene, the aliens’ comedic entrance from the spaceship, and 
the aliens’ attempt to attack the rabbit. The lookat gates help 
pace the story as the viewer looks back and forth between the 
rabbit and the aliens. 

Stranger Things [33]. In this video, the viewer starts out in 
the living room. The camera then automatically moves first to-
wards the dining room, and then in an opposite direction down 
a hallway. We used a lookat gate to ensure that viewers look 
at the dining room and down the hallway before the camera 
starts moving, so that they are looking in the direction they 
move towards. Otherwise, the unanticipated camera motion 
could be confusing and disorienting. We used a lookat gate to 
ensure that the viewer turns around before the monster attacks 
the viewer. 

Wild [14]. In this video, a hiker rests on a rock and sees the 
“ghost” of her mother, who appears and disappears opposite 
the hiker. The viewer must look back and forth to see one and 
then the other. We added two lookat gates; one for the hiker 
when the ghost appears, so that viewers see the main character 
and do not witness the ghost’s appearance, and subsequently 
one for the ghost. Finally, we added an offscreen gate with 
forward arcs, so the ghost immediately disappears when the 
viewer looks away. 

National Geographic Lions [32]. In this documentary, the 
narrator occasionally refers to specific lions within a group, 
who each briefly become the main character. We added lookat 
gates to wait for the viewer to look at the correct lion before 
allowing the narration for that lion to begin. In addition, we 
added a lookat gate right before a lion attacked another lion, 
to ensure viewers see this important action. 

Murder Mystery. This video is similar to Wild, in that a ghost 
appears opposite from the main character (with the viewer in-
between the characters) and disappears when the character 
looks away; however, there is more background motion which 
makes looping more difficult. We add a lookat and an offscreen 
gate for the ghost’s appearance and disappearance, as well 
as another lookat gate for the position where the ghost was 
standing, so the viewer sees that the ghost has vanished. 

Video Genre Length (sec), Type 
1st 2nd 3rd 

Invasion! 
Lions 
Stranger Things 
Wild 
Murder Mystery 

Comedy 
Docu. 
Horror 
Drama 
Mystery 

7 L 
7 L 
4 L 

10 L 
6 L* 

7 L 
4 L 
5 L 
3 L 
4 O* 

4 L 
5 L 
4 L 
7 O* 
7 L* 

Table 1. Summary of example videos. For each video, we added three 
gated clips. We show the length (in seconds) and type of each gated clip. 
L: lookat gate, O: offscreen gate, *: enabled forward arcs. 

Our source code and the gated clip metadata used to produce 
these examples are available at the project website: https: 
//lseancs.github.io/viewdepvrtextures/ 

USER STUDY 
In order to understand the effects of gated clips, we asked 
viewers to watch the five videos described in the previous sec-
tion, and conducted a study to obtain qualitative feedback on 
their viewing experience. While the videos we used include 
some passive gaze guidance cues, we did not explicitly com-
pare our method to passive (e.g., Nielsen et al. [34]) or active 
( [20,29,36]) gaze guidance techniques, because our method is 
complementary to them. Our method guarantees viewers see 
the ROI, whereas passive techniques do not. Active guidance 
techniques guarantee viewers see a ROI, but they also limit 
viewer interaction and can reduce immersion, as Nielsen et al. 
observed, whereas our method does not. 

For the study, we used gated clips produced by an earlier 
version of our system, in which the vertical FOV of each dis-
cretized view was equal to the Oculus Rift FOV (h = 96.02◦), 
instead of the the full vertical range of h = 180◦ . Using a ver-
tical FOV smaller than the full height might introduce visual 
artifacts if the viewer looks up or down beyond the view FOV. 
However, since there was virtually no motion near the poles 
of these videos, the smaller vertical FOV was not a problem. 
See Discussion Section for more details on choosing view 
discretization and FOV. 

Each participant watched each of the five videos in one of two 
conditions: either a Gated version or a Standard (non-looping) 
version; participants only saw one version of each video. The 
ordering and condition were random. Each participant saw 
at least one video in each condition. They watched videos 
on an Oculus Rift VR headset, while we recorded their head 
orientation data. 

In pilot experiments, in an attempt to single-blind the study, 
we did not explain the two conditions (Gated and Standard) to 
the participants. However, we found that because they did not 
understand the conditions and how they were different, they 
could not specify which version they preferred. Thus, in order 
to capture viewers’ preferences between Standard and Gated 
clips, in our main study we informed participants as to which 
version of each video they were watching. 

Before beginning the study, we explained to participants the 
two versions of videos they might watch; “Standard” version 
for normal video playback, and “View-Dependent” (Gated) 
version in which playback would wait for them if they were 
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Figure 11. User study scores comparing Standard and Gated clips in 
three categories: (1) how easy it was to follow the story, (2) how stress-
ful it was to follow the story (7 for least stressful), and (3) how inter-
ested they were in the stories. Confidence intervals are computed as 
2×Standard Error. We found significant differences between the scores 
for “how easy” and “how stressfull”, as indicated by the *’s, but not for 
“how interested”. 

looking in the wrong direction when an important story ele-
ment occurs. Before showing each video, we only told partici-
pants whether the video was “Standard” or “View-Dependent.” 

After each video, participants removed the headset and took a 
break while filling out a questionnaire. We asked the partic-
ipants to describe the story in their own words and to share 
feedback on how natural they thought the video playback was. 

After all 5 videos were shown, we asked participants to com-
plete a survey comparing the Standard and Gated versions 
on three 7-point Likert items: how easy it was to follow the 
stories, how stressful it was to follow the stories, and how 
interested they were in the stories. At the end, the survey 
included a binary-choice question asking which version they 
preferred overall and also included free-response questions 
asking what they liked and disliked about each version. 

There were a total of 11 (5 female and 6 male) participants, 
with ages ranging from 24 to 36. All participants had some 
level of prior VR experience, such as watching VR videos 
or playing VR games. All except one participant watched 
all 5 videos; one participant preferred not to watch a VR 
horror video (Stranger Things) but watched the other 4 videos. 
We instructed participants to stop if they felt sick, but no 
participants reported sickness during the study. 

Study Results 
Overall Preference: Standard vs Gated Clips. Most par-
ticipants (9 out of 11) preferred the Gated videos over the 
Standard videos. Only one participant preferred the Standard 
version, because they thought the Gated videos shown were 
slow (however, their complaints were largely about the pacing 
in the Gated version of the Lions video). The other participant 
was ambivalent: they preferred the Standard version if there 
were strong guidance cues on where to look, but if there were 
no strong cues, and if the event triggered immediately after 
they looked at the right thing, they preferred the Gated version. 

How Easy, Stressful, Interesting? Participants scored the 
Standard and Gated versions in three 7-point Likert items: 
how easy it was to follow the stories, how stressful it was 
to follow the stories, and how interested they were in the 
stories (Figure 11). For each category, we performed the 
Wilcoxon signed-rank test on each pair of answers (Standard 
and Gated) from the same person. We applied continuity 
correction by adjusting the Wilcoxon rank statistic by 0.5 
towards the mean value when computing the z-statistic [24]. 
For “how easy,” there was significant preference for the Gated 
version (p < 0.009, W = 1.5, r = 0.02). For “how stressful,” 
there was a significant preference for Gated version being less 
stressful (p < 0.03, W = 5, r = 0.076). We found no statistical 
significance in the “how interested” answers. 

Standard vs Gated Clips: Likes and Dislikes. Most partici-
pants liked the Standard video because it did not hold up the 
story and had better flow, but they did not like the fact that 
they had to worry about missing important narrative elements. 
They liked the Gated video for being able to explore scenes at 
their own pace without worrying they might miss something. 
One stated reason for disliking the Gated version was having 
to look around and figure out what to look at to trigger the 
next event. Some participants disliked the fact that sometimes 
looking at the right thing did not immediately trigger the next 
story event. This happened occasionally when the clip they 
watched did not have seamless forward jump arcs to take them 
to right before the gate time; in such cases, they had to wait 
until the video played normally to the gate timecode. 

How Natural was the Playback? Most participants inter-
preted the question “how natural did the playback seem to you” 
broadly, answering in terms of how natural the story content 
was, how natural it felt to have the interactive component in 
the story, or how natural the size of characters in the stories ap-
peared to them (e.g., the rabbit from Invasion! was larger than 
real-life rabbits). Some participants were not accustomed to 
live-action videos waiting for them (e.g., the character breath-
ing and waiting), and so thought the interactive aspect was 
unnatural. Only one participant noticed a ghosting artifact of 
two distant, moving pedestrians in the Murder Mystery video. 
In the original video, the two pedestrians walk steadily away 
from the camera the entire clip (which does not provide a 
view-dependent video texture an opportunity to loop), and in 
the postprocess stage, our tool could not find good backward 
arcs that end before the earliest cut tC. 

ROI Hit Rate for Standard Clips. In addition to the qualita-
tive feedback, we also analyzed the head orientation data of 
all participants. In Gated versions of videos, participants had 
to see the ROI at the corresponding gate timecodes in order to 
proceed. We checked how often participants who watched the 
Standard version missed the ROI at the same gate timecodes. 
Overall, only an average of 61.9% of participants saw the ROI 
at the corresponding times (σ = 31.4%). 

Time Elapsed for Gated Clips. We also looked at how long 
it took participants to pass a gate, relative to the length of 
the gated clip without any looping. For Gated clips in which 
forward arcs were not enabled, we found that participants took 
on average 2.25 times the original clip length to pass the gate 
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(σ = 1.77, average delay of 7.9s). For Gated clips in which 
forward arcs were enabled, participants took 1.79 times the 
clip length to pass the gate (σ = 1.15, average delay of 4.7s). 
However, this varied considerably; for example, in the second 
gate of Murder Mystery, viewers passed the gate faster with 
forward arcs than with the Standard version. 

DISCUSSION 
User Study Conclusions. In our user study, most viewers re-
ported they preferred Gated videos over Standard ones. Over-
all, they find it easier and less stressful to follow stories in 
Gated than in Standard videos. However, because participants 
were aware of which videos were produced by our system, 
their feedback may be biased. The study indicated that a dis-
advantage for Gated videos was the need to figure out where 
to look in order to pass a gate. Thus, we suggest filmmakers 
use gaze guidance techniques in conjunction with our gating 
method, such as motion or lighting cues [18], in order to direct 
viewers’ attention. 

Design Choices for Gated Video. In order to produce video 
textures that create a good experience, we recommend direc-
tors take the looping structure into account when creating 
gated clips. In particular, directors should pay attention to 
structured (i.e., non-periodic, non-stochastic) motion within 
the scene. Views that do not satisfy the gate condition need to 
be looped, so the director should design the shot, e.g., shoot 
for a longer period, so that those views have some period of 
time with no structured motion. For example, video of a car 
moving across one view cannot be seamlessly looped, because 
no two frames have the car in the same position. However, 
if the director films for a longer period of time and captures 
additional footage of the car moving out of the view, or of the 
car coming to a stop within the view, then our method could 
find seamless loops using just the frames after the car leaves, 
or of the car at rest. 

Our method may loop structured motion spanning multiple 
views. For example, consider a car moving from left to right 
across most of the scene. In a middle view between the start-
ing and ending views of the car our system might generate a 
backward arc transitioning from a frame after the car leaves 
the view to a frame before the car enters the view. A viewer 
looking at this middle view might then see the car pass through 
the scene repeatedly. If the car is in the background, it may be 
fine for viewers to see the car loop in this manner. However, if 
the car is an important object that the director wants viewers 
to see, then seeing the car repeat its motion could be confus-
ing. Thus, the director should choose the gate time and ROI 
carefully in such cases. For example, in the Patio video from 
our supplemental material, a character stands on the right side 
of the scene, walks to the left side, and stops. If the director 
places the ROI on the character after she comes to a stop, the 
graph-cut algorithm produces arcs that loop the walk, which 
may not be desirable. If the director instead places the gate 
ROI on the character before she starts walking, as shown in 
our supplemental material, the director can prevent viewers 
from seeing the walk loop repeatedly. 

Number of View Discretizations & View FOV. The director 
should consider the trade-offs when choosing parameters for 

the number of view discretizations |V| and the FOV per view 
vi=1...|V|. Recall that, during playback, our video player looks 
up the nearest discretized vi and follows the arcs in vi. Thus, 
increasing |V| increases the chance that, at run-time, the actual 
viewer’s FOV will completely overlap with a view vi, and 
thereby reduces the chance of seeing artifacts when following 
arcs in vi. However, a larger number of views also increases 
computational cost. 

Arc computations for each view only consider the pixels within 
the view FOV. Thus, a view FOV that is smaller than the FOV 
of the head-mounted display (HMD) may introduce artifacts 
during playback, since the HMD would show pixels that fall 
outside of the corresponding view FOV when playing loops. 
A view FOV that is larger than the HMD FOV makes arc 
computations more conservative and reduces the flexibility in 
finding seamless arcs, since it includes costs of pixels that fall 
outside the HMD FOV which viewers actually see. In our 
examples, we used |V| = 40 and a view FOV of (w = 80.65◦ , 
h = 180◦), which we found to be a good trade-off. 

LIMITATIONS AND FUTURE WORK 
Our algorithm does not account for audio when generating the 
view-dependent video textures. By default, our tool simply 
cross-dissolves the audio during transitions; we have found 
that this approach usually hides the seams in the loops well for 
ambient or environmental audio. For clips that have structured 
audio, directors may need to handle the audio tracks separately 
when generating gated clips. For example, music tracks could 
be looped independent of the video [39], whereas audio cues 
must be carefully synced. Future work could explore ways of 
looping audio in conjunction with the video. 

While our algorithm can loop structured motion spanning 
multiple views, it may not be able to find seamless loops for 
intra-view structured motion, i.e., structured motion contained 
within one view. Future work could improve the applicabil-
ity of our approach, by combining view-dependent arcs with 
motion segmentation and/or using frame synthesis for better 
looping video generation. For instance, if a view contains 
two people performing different repetitive actions, our method 
may not be able to find a seamless loop, but segmentation 
approaches [22, 40] could segment the two people and loop 
them separately. Frame synthesis could generate new frames 
to increase looping flexibility within a view. 

Gated clips open up a considerable design space for the film-
maker to work within when creating their desired experience. 
For example, should the viewer be required to dwell on the 
ROI for the gate to be passed? Should it be sufficient that the 
viewer has seen the ROI at some time in the past? In theory, 
a gate could be used for every single important moment in 
the story, but such an arrangement might introduce awkward 
pauses and disrupt the pacing of the story, so there is also a 
space for determining where and how to place gates in a narra-
tive. Future work could examine how different types of gate 
conditions and combinations thereof help achieve a variety of 
narrative goals. 
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APPENDIX 

VIEW-DEPENDENT ARC COST COMPUTATION 
We now provide more detail into how arc costs are computed. 
Recall that an arc is a transition between two frames (t, t 0), 
and a view-dependent arc is a transition between two frames 
in a particular view v, represented as a triplet (v, t, t 0). 

Our goal is to find arcs that transition seamlessly, so that 
viewers don’t notice the transitions when they occur. In a pre-
processing step, we assign costs to all possible view-dependent 

arcs (v, t, t 0) within a gated clip. The cost measures how seam-
less the arc transition is. As mentioned before, we only con-
sider the field of view that the viewer sees when computing 
view-dependent arcs. We first discretize the view-sphere of all 
possible viewing directions into V views, and for each view, 
compute the costs of all possible arcs within that view. There-
fore, the total number of arcs is V ∗ f 2, where f is the number 
of frames in the gated clip. 

View-Dependent Arc Cost Matrix 
There are f 2 total arcs in each viewing direction, where f is 
the number of frames in the gated clip. We construct a cost 
matrix of size f × f that represents the arc cost between each 
pair of frames. 

We define the cost of an arc between two frames for a given 
view as follows. Our goal is to penalize visually-noticeable 
changes when cross-dissolving between the two frames, such 
as a person appearing or disappearing, while ignoring minor 
changes due to pixel noise. We then apply a user-defined 
threshold to determine if an arc is noticeable or not. 

The cost for an arc from time i to time j in view direction k is 
a summation over every pixel visible to the view, comparing 
the frames before and after the arc, summed over the duration 
N of the cross-dissolve: 

C(vk, ti, t j) = 
N 

∑ ∑ d(I`,i+x, I`, j+x) max(e`,i+x,e`, j+x) (1) 
x=0 ̀ ∈pixels(k) 

where I`,i is the RGB value of pixel ` at time i, and e`,i ∈ [0,1] 
is a binary edge map at pixel ` at time i. The edge maps 
are computed by Canny edge detection with a 3 × 3 Sobel 
filter, and min/max thresholds of 80 and 100 for the intensity 
gradient. The difference function ignores pixel differences 
below a threshold τ: � 

||a− b||2 , ||a − b||2 ≥ τ
d(a,b) = (2)

0, otherwise 

where a and b are 3-dimensional vectors that represent RGB 
values in the range [0..1]. We use τ = 0.015 to 0.2, depending 
on how much high-frequency, stochastic motion there is in the 
clip. The τ threshold prevents pixel changes due to stochastic 
motion, such as moving tree leaves, from overly penalizing 
the arc. Empirically, we found that a clip with no trees in the 
foreground works well with τ = 0.015, whereas a clip with 
large foreground trees moving in the wind requires a larger 
τ = 0.2. 

For computational efficiency, we scaled our 360◦ videos in 
equirectangular format down to 640 × 320 before computing 
the cost matrices. We used a Summed Area Table [13] to 
accelerate computation, since the summation otherwise would 
include considerable overlapping computations for overlap-
ping views. The Summed Area Table computation for a 7s 
30fps clip takes about 3.3 hours to complete on a 3.1 GHz Intel 
Core i7 processor, in single-threaded unoptimized Python. 
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BUFFER EDGE COSTS 
We describe in more detail how buffer edge costs are assigned 
in our graph cut formulation. For views in the direction of the 
gate (v ∈ H), we set the buffer edge weights to infinity for all 
timecodes t ∈ 1 : T − 1. 

For views v < H, by default, we set the weight of the buffer 
edge from (v, t) to (v, t)B to the cost of the best backward 
arc (lowest-cost) from this node, from among all backward 
arcs that satisfy the user-specified minimum backward arc 
length. The user specifies a threshold γ for how large a cost 

where M is the minimum loop length in number of frames. 
ω1 assigns a small penalty (between 0 and 2) based on how 
close the node is to the ends of the contiguous block as well 
as the block length, and ω2 assigns a small penalty based on 
whether the block it is in has complete overlap with any block 
in neighboring views. Let D(v, t) represent the contiguous 

� 

block of safe nodes that node (v, t) is in. 

α = min(t − Dstart(v, t), Dend(v, t) − t)� (4) 
Dlength(v, t)

β = min K, (5)
2is perceptually acceptable. If a node (v, t) has a backward arc 

with C(v, t, t 0) < γ , we call the node a safe node; otherwise, we 
⎧⎨ ⎩⎧⎨ ⎩ 

Dlength(v, t) 
2 (6)

1, if β = call it an unsafe node. With our view discretization and FOV, it φ = 
is possible that the viewer’s FOV may partially extend outside 
the FOV used to compute an arc cost, so even though C(v, t, t 0) 

0, otherwise 
α 
+ φ , α ≤ βmay be less than γ , C(v + ε, t, t 0) may not be and may have 

ghosting in the periphery. Hence, we prefer taking arcs from 
1 − 

βω1(v, t) = (7) 
0, otherwisenodes that are neighbored by safe nodes, in order to decrease 

the likelihood of peripheral ghosting. 

Thus, to compute the buffer edge weight EB(v, t), we find 
contiguous blocks of safe nodes in each viewing direction, i.e., 
each row of the graph (Figure 8), and add a small penalty to 
arcs of safe nodes that are within K frames near the ends of 
the blocks, or do not fully overlap with any blocks in adjacent 
views: 

EB(v, t) = 

0
ω2(v, t) = α ∑ maxδ (D(v, t) ⊆ D(v , t 0)) (8) 

t 0 v0∈N(v) 

where δ is an indicator function that shows whether the frames 
of the first block is a subset of the frames in the second block. 
α is the amount of penalty for each neighbor in which the 
block D(v, t) is not a subset of. We used α = 0.1 and K = 15. 
This heuristic reduces the chance of getting bad arcs in the 
post-process step, because it favors cutting on sequential arcs 
in the contiguous blocks, as opposed to arcs of non-contiguous, 

∞, if v ∈ H isolated safe nodes. For large contiguous blocks of safe nodes, 
⎧ ⎪⎨ ⎪⎩ 

ω1(v, t)+ ω2(v, t), if v < H and (v, t) is safe (3) it is likely that the frames have similar levels of motion (e.g., 
static), so safe nodes in large contiguous blocks are more likely 
to have a good backward arc that ends at or before the first 

min C(v, t, t 0), if v < H and (v, t) is unsafe 
t 0≤t−M 

safe node of that block. 
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