
◦◦View-Dependent Video Textures for 360◦ Video
Sean J. Liu Maneesh Agrawala Stephen DiVerdi Aaron Hertzmann

Stanford University Adobe Research
{lsean, maneesh}@cs.stanford.edu {diverdi, hertzman}@adobe.com

360 Video with Sequential Playback Headset View 1 Headset View 2 360 Video with View-Dependent Video Textures

video loop

video loop

sequential play

sequential play

a b

Figure 1. In 360◦ video, viewers can look anywhere at any time. In the opening scene of Invasion!, a rabbit emerges from a cave (a). In sequential
playback, a viewer looking at the cave (green box) will see the rabbit emerge, whereas a viewer not looking at the cave (red box) will miss this event.
We provide tools to guarantee that viewers see the region of interest (ROI) at the correct timecode to witness the event (b). We introduce the concept
of gated clips, where playback only continues if the viewer satisfies a condition related to the ROI (green boxes). Otherwise, our player loops the video
using view-dependent video textures (red boxes).

ABSTRACT
A major concern for filmmakers creating 360◦ video is ensur-
ing that the viewer does not miss important narrative elements
because they are looking in the wrong direction. This paper
introduces gated clips which do not play the video past a gate
time until a filmmaker-defined viewer gaze condition is met,
such as looking at a specific region of interest (ROI). Until
the condition is met, we seamlessly loop video playback using
view-dependent video textures, a new variant of standard
video textures that adapt the looping behavior to the portion of
the scene that is within the viewer’s field of view. We use our
desktop GUI to edit live action and computer animated 360◦
videos. In a user study with casual viewers, participants prefer
our looping videos over the standard versions and are able to
successfully see all of the looping videos’ ROIs without fear
of missing important narrative content.

CCS Concepts
•Human-centered computing → Virtual reality;
•Computing methodologies → Computer vision prob-
lems;

Author Keywords
view-dependent video texture, 360◦ video, virtual reality,
cinematography, gaze guidance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’19, October 20-23, 2019, New Orleans, LA, USA.
Copyright © 2019 Association of Computing Machinery.
ACM ISBN 978-1-4503-6816-2/19/10 ...$15.00.
http://dx.doi.org/10.1145/3332165.3347887

INTRODUCTION
The medium of 360◦ video provides new artistic opportuni-
ties for filmmakers, allowing them to create videos with a
greater sense of immersion and engagement than with conven-
tional video. It also presents new challenges. In traditional
cinematography, the director has full control over the camera
orientation, field of view, zoom, and focus at all times. Tra-
ditional filmmakers use these controls to drive the narrative,
ensuring that the viewer sees each important story element at
the right time. With 360◦ videos, however, directors no longer
have this control, and viewers can look in any direction at any
time. As a result, viewers may miss important story content
and become lost or confused as the story progresses.

For example, in the animated short “Invasion!” [7], the story
begins with an establishing shot placing the viewer in the mid-
dle of an icy lake (Figure 1). Initially, the viewer is given time
to look around and become familiar with their surroundings.
A rabbit eventually emerges from a small cave. However, if
the viewer is not looking at the cave entrance when the rabbit
emerges, they will not see the rabbit, or what it does next.
A second type of example is in the “Stranger Things: The
VR Experience” [33] short film. As the tension rises, the
viewer answers the phone, and is told to turn around. Then,
a monster attacks from the direction opposite the phone. If
the viewer does not turn around fast enough, they miss the
monster attacking. A third type of example occurs in “Wild:
The Experience” [14], where the viewer is placed between a
hiker and an empty rock, on which a “ghost” appears only if
the viewer is not looking at the rock. The hiker and the sound
of her breathing is intended to get the viewer’s attention away
from the rock, so that the ghost can appear outside the viewer’s
field of view. However, if the viewer never looks away from
the rock, the video player will reach the end of the video with-
out the ghost ever appearing. Although the directors of these
examples include passive gaze guidance techniques, such as

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

249

http://dx.doi.org/10.1145/3332165.3347887
mailto:permissions@acm.org

audio cues, to encourage the viewer to look in a particular
direction, none of the techniques are foolproof.

This paper proposes a new filmmaking technique we call gated
clips, designed to ensure that a viewer sees key elements
of the narrative in a 360◦ video. Using our technique, the
filmmaker can author a gate which ensures that playback may
only proceed past a gate time only if a filmmaker-defined
viewer gaze condition is met, such as looking at a specific
region of interest (ROI). Viewing such gated clips requires a
new kind of video player that seamlessly loops the 360◦ video
playback until the gate condition is met.

For example, in the “Invasion!” short, we can place a gate
just before the rabbit emerges from the cave and treat the gate
ROI as the cave entrance. Our video player then seamlessly
loops the video playback until the viewer is looking at the cave
entrance when the rabbit is emerging and only proceeds past
the gate at that time. Gated clips also enable new kinds of shots
where action proceeds only when the viewer is looking away,
e.g., in “Wild,” our video player can ensure that the viewer has
looked away from the rock before the ghost appears outside
their view, and then that they have looked back at the rock to
see the ghost.

In order to create gated clips, we introduce view-dependent
video textures for 360◦ video. Our approach is based on video
textures [40], a generalization of video looping, to allow the
360◦ video to seamlessly jump back to earlier frames, so that
the viewer will not notice the looping. Conventional video
texture algorithms only allow transitions between frames when
the change is imperceptible anywhere in the frame. However,
this criteria is too conservative for 360◦ video, where the entire
view sphere is encoded in an equirectangular frame, since
the change only needs to be imperceptible in the viewer’s
field of view (FOV). Our view-dependent video textures relax
this constraint. We introduce a novel graph cut algorithm to
convert a standard 360◦ video clip into a gated clip with such
view-dependent video textures.

To prototype these ideas, we present a user interface for edit-
ing 360◦ videos with gated clips. Our interface is built on a
conventional timeline interface, but with special shot types for
gated clips. We demonstrate results on five different videos,
four of them professionally produced and not intended for
use with our technique. In our user study, 9 out of 11 users
preferred videos with gating.

RELATED WORK
Our approach builds on three main areas of related work.

Interactive and looping video
Forms of interactive (or dynamic) video, where the video
playback changes depending on viewer actions, have been
explored for several decades. The first methods, including
Movie-maps [31] and QuickTimeVR [11], allowed navigation
in real and virtual environments, whereas some arcade video
games, such as Space Ace [2] and Dragon’s Lair [1], used
interactive video for branching narratives.

Our method uses video textures to create video that loops
seamlessly until certain conditions are met. Video textures

were introduced by Schödl et al. [40], who demonstrated find-
ing seamless non-repeating paths through short clips to create
the experience of endlessly playing videos, as well as to drive
video in different ways. This technique has been extended
to loop video panoramas captured by a panning camera [3],
motion capture videos of humans [15], videos orbiting around
a moving object [26], and responsively looping video based
on user interactions [23].

In order to increase the number of possibilities for seamless
transition in a video texture, some methods have segmented the
video into independently-moving regions [22,40], and then cre-
ated separate video textures for each such region. In contrast,
we introduce view-dependent arcs, specifically for applying
video textures to 360◦ video. Our approach is complemen-
tary to segmentation; our method produces video textures by
exploiting viewers’ limited FOV in 360◦ video, whereas seg-
mentation loops the entire scene by looping and compositing
different moving parts of the scene.

Motion segmentation methods are also used in the construc-
tion of cinemagraphs [4, 5, 25, 27, 28], photograph-like im-
ages with some moving elements. These methods create
pixelwise textures that are not appropriate for our structured
scenes. Our view-dependent arcs are also akin to Chenney and
Forsyth’s [12] view-dependent approach to accelerating physi-
cal simulation, by eliding computation for scene elements not
in view.

Gaze guidance
While 360◦ video provides a new dimension of viewer inter-
activity and agency, this freedom is accompanied by users
struggling with not knowing where to look [35, 45]. Methods
for guiding or forcing the viewer to look at a particular region
of interest (ROI) are called gaze guidance. Our approach is
complementary to gaze guidance, and we expect our method
to be used together with gaze guidance techniques, such as
audio cues to attract the viewer’s attention. For a survey and
taxonomy of gaze guidance techniques, see Nielsen et al. [34].

Subtle gaze guidance techniques provide visual and audio cues
that attempt to guide the viewer’s gaze without breaking im-
mersion. This is particularly important for narrative content
where a filmmaker wishes to keep the viewer fully absorbed
by the story. Conventional filmmakers aggressively use subtle
cues to guide the viewer’s attention, and these effects are also
being explored by 360◦ filmmakers and researchers [38, 42].
Several techniques apply subtle gaze guidance to normal field
of view (FOV) video, i.e., on a desktop computer monitor.
These methods include gradually blurring non-ROI parts of
the image [21], applying shallow depth of field [44], modu-
lating the scene’s visual saliency [46], and presenting a small
flickering distractor in the viewer’s peripheral vision in the
direction of the ROI [6]. For in-headset VR, subtle techniques
in the literature include inducing optical flow in peripheral
vision [9] and flickering elements in peripheral vision [18].
Grogorick et al. [19] perform an evaluation comparing differ-
ent subtle guidance techniques. Each of these techniques finds
some success in guiding viewer gaze, but none guarantee that
viewers will see critical moments.

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

250

◦◦

Several methods actively control the viewer’s gaze direction
to focus on a ROI; depending on how this is implemented, it
can substantially break immersion. This includes directly ro-
tating the scene [29] or rotating the user in a motorized swivel
chair [20]. Attempts to hide this rotation include applying
very slow rotations [43], or applying gains to the user’s own
rotation [48]. Reorienting the scene during cuts [36] maintains
immersion but can only be applied at cuts. A picture-in-picture
visualization may also be shown of the ROI so that viewers
always see important content [30].

View-dependent 360◦ video and animation
Our work is inspired by several short 360◦ video and ani-
mations that use different kinds of view-dependent playback.
Several animated shorts use forms of gating to pause the ac-
tion (without pausing the motion or audio), either waiting for
the viewer to look at something, or to look away from some-
thing, including “Buggy Night,” “Piggy,” and “The Simpsons:
Planet of the Couches,” from Google Spotlight Stories1 [17].
In “Buggy Night” and “Piggy,” the viewer is essentially part
of the story, either scaring the flies by looking at them in
“Buggy Night,” or catching Piggy stealing a cake. The end-
ing of the “Batman: Arkham VR” [37] video game uses an
offscreen action effect to simulate the player’s hallucinations.
Disney’s “Cycles” [47] animation fades out the lighting and
action whenever the viewer looks away. Each of these exam-
ples is animated, and, presumably, carefully hand-authored to
run in real-time rendering engines; whereas our method can
work with live action video with comparatively lightweight
authoring effort.

1These shorts are viewable in the Google Spotlight Stories app for
iOS and Android. On YouTube, they do not have view-dependent
playback. “Piggy” also has a separate app in the Steam Store.

Figure 2. Our prototype desktop video editing inter-
face with a gated clip. The upper left pane shows a
preview of the headset FOV, which is output live to
the Oculus Rift. The upper right pane shows the full
equirectangular view and marks the current headset
FOV (pink border). The video timeline on the bottom
acts as a conventional video editor, with each dark
blue rectangle representing a clip. The first clip is
a gated clip (white border). Filmmakers specify a
gate timecode (red vertical line on timeline), a ROI
(green box) on the equirectangular frame, as well as
other parameters shown in the settings box below the
clip. View-dependent arcs are shown as backward
arcs (red arrows) on top of the gated clip. In this ex-
ample, the ROI is the aliens, and the gate condition is
a lookat gate, i.e., playback may not advance past the
gate timecode unless the viewer is looking at the ROI.
To avoid static loops and reduce arcs with visual arti-
facts, the filmmaker can set thresholds on the length
of arcs and on the perceptual difference of arc transi-
tions. After setting all thresholds, the filmmaker can
generate the view-dependent arcs by loading in (pre-
processed) arc costs and applying the gate. To have
viewers jump to the gate timecode as soon as they see
the ROI, the filmmaker can also enable forward arcs
that are under a perceptual threshold. Finally, the
filmmaker can choose to cross-fade the audio during
loop transitions or choose to mute the audio entirely.

We are aware of only one example using live action video:
“Wild: The Experience” [14] from Felix & Paul Studios, de-
scribed in the introduction. In the original short, a character
may appear and disappear after certain times, depending on
the viewer’s head movements. The video plays for a fixed
duration regardless; there is no gating, and thus no guarantee
that the viewer will see significant events.

GATED CLIPS
As described in the Introduction, it is easy for viewers to miss
important moments in 360◦ experiences; making sure that
the viewer sees the right things is a common concern among
the 360◦ filmmakers we have spoken with. Filmmakers are
accustomed to controlling the viewer’s gaze with shot framing,
zoom, depth of field, and camera movements; none of these
techniques are available in 360◦ video, and, worse, the viewer
can be looking in away when an important moment starts.

To address this problem, we introduce the gated clip (Figures 1
and 2). A gated clip is a portion of a video that loops until the
viewer satisfies some viewing condition, such as looking in a
specific direction. A gated clip is comprised of the following
elements: The gate timecode is a specific frame in the clip.
The video may only progress beyond the gate timecode when
a gate condition is met. We use the term timecode to describe
a frame index into the video timeline, and distinguish such
timecodes from playback time, which may differ on each
viewing due to looping.

Types of gates
We consider two types of gate conditions: (1) A lookat gate
specifies that the viewer must see a specific region of interest
(ROI) at the gate timecode for the video playback to proceed,
i.e., that the ROI is within the viewer’s field of view (Figures 1
and 2). (2) An offscreen gate is the inverse condition, i.e.

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

251

Figure 3. Discretized view directions. This figure visualizes the FOVs
of |V| = 6 discretized view directions evenly spaced around the equator
on an equirectangular frame from an example video. In our implemen-
tation, we used |V| = 40. The horizontal FOV of each discretized view
matches the horizontal FOV of the Oculus Rift and covers the full verti-
cal range of the video.

it specifies that the viewer must not see the ROI at the gate
timecode for video playback to proceed.

We give examples of three narrative use cases for these two
types of gate conditions. A common trope in 360◦ filmmaking,
such as in “Invasion!,” (see Introduction section) is that the
viewer is given a considerable amount of time to become
familiar with a new environment before the first main action
begins; this is akin to an establishing shot in conventional
filmmaking. In such cases, authors could use a lookat gate
when the viewer is initially placed in a new environment, with
the gate timecode and ROI located at the time and spatial
location where the main action begins. In the “Invasion!”
example, the gate timecode would be placed at the time the
rabbit first appears, and the ROI would be placed at the cave
entrance. Another narrative use case is when the viewer is
supposed to move their head in the middle of the story. For
example, in “Stranger Things,” the viewer is instructed to
turn their head around in order to see the monster at the end
of the hallway. In such cases, the author could again place
a lookat gate right before the next action starts and set the
ROI on the new target location. In this example, the ROI
would be on the monster, and the gate timecode would be right
before the monster attacks. Finally, for surprising entrances
and disappearances, the author could use offscreen gates to
ensure that the viewer does not see the actual appearance or
disappearance. For example, in the “Wild” example, the author
could place an offscreen gate right before the ghost appears
and mark the rock as the ROI. That way, the viewer must look
away for the ghost to appear offscreen, and then the viewer
could turn to look at the rock and see the ghost.

VIEW-DEPENDENT VIDEO TEXTURES
Simply looping the video until the gate condition is met would
often break immersion, because of ghosting—objects appear-
ing, disappearing, or jumping—in the transition from the last
frame of the loop to the first frame. Instead, we create seam-
lessly looping gated clips by generalizing the approach of
video textures [40] to handle 360◦ video and gating.

A video texture is a video clip that can be played back end-
lessly by adding seamless transitions between non-sequential

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t
Figure 4. Visualization of view-dependent video textures for a gated clip.
Each row corresponds to one of the discretized viewing directions (here
we show the first five views only). The gate timecode is t = T , and v =
2 is the only view that satisfies the gate condition (green vertical line);
other views do not (red vertical lines). Red arrows show the computed
backward arcs. Tick marks correspond to frames, and purple ones are
frames from which there are seamless backward arcs, i.e. arcs in which
the transition frames have low perceptual difference.

frames. Each transition occurs along an arc (t, t 0), which tran-
sitions playback from frame t to frame t 0, over a user-specified
cross-dissolve interval (our implementation uses a fixed 0.5
second cross-dissolve). By selecting arcs carefully, we can
create seamless playback, in which ghosting is minimized.
There are three types of arcs: sequential arcs (t, t + 1), used
in normal playback; backward arcs (t, t 0), t 0 < t, and forward
arcs (t, t 0), t 0 > t + 1.

Constructing video textures normally involves finding seam-
less arcs (t, t 0) between non-sequential frames, such that cross-
dissolving the video from frame t to frame t 0 is imperceptible
to the viewer. The conventional approach is to measure some
perceptual distance metric between the two frames. However,
measuring the image distance for the entire 360◦ equirectan-
gular image is too conservative, because viewers only see a
small portion of the scene at any time; for example, typical
VR headsets only have roughly an 80◦ horizontal field of view.

The core idea of view-dependent video textures is the use of
view-dependent arcs. View-dependent arcs allow specific run-
time transitions as long as the viewer is looking in a particular
range of directions. These transitions are selected to minimize
perceptual difference within the field of view. Specifically, we
discretize the view-sphere with a fixed set of directions v ∈ V.
A view-dependent arc is then represented as a triplet (v, t, t 0)
and is computed based on the pixels visible within v.

We chose a discretization of |V| = 40 views. The views are
equally-spaced around the equator (Figures 3 and 4). In our
test videos, there is more motion around the equator and virtu-
ally no motion near the poles, so we chose the view FOV to
have higher granularity of coverage in the horizontal direction
than in the vertical direction. Thus, we set the horizontal FOV
of each view to match the horizontal FOV of the Oculus Rift
headset and the vertical FOV to cover the video’s full vertical
height (w = 80.65◦ , h = 180◦). The FOVs of adjacent views
overlap by 71.65◦ , with their centers 9◦ apart. Additional
views could easily be added to the discretization, or coverage

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

252

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t

Figure 5. One naive solution is to find one loop (i.e., one backward tran-
sition arc) for each view that does not satisfy the gate condition. In this
example, the gate timecode is t = T , and the view v = 2 satisfies the gate
condition. All other views include one backward arc forming a loop. The
thick black line shows an example viewer’s head trajectory through the
views over time (slowly turning their head from v = 4 to v = 0). Unfor-
tunately the viewer can still get past the gate time through another view
v , 2 via certain head motions, so the naive solution does not provide a
guarantee that the gate condition is met before playback progresses.

areas expanded as needed. See Discussion Section for more
details on the trade-off between the number of discrete views
and the FOV size of each view.

GENERATING VIEW-DEPENDENT TEXTURES
Given a user-specified gate and an existing video clip, we
wish to generate a view-dependent texture that satisfies the
following properties: (1) The video proceeds past the gate
timecode only if the viewer satisfies the gate condition. (2)
The gate timecode is reachable if the viewer is looking in
a direction that satisfies the gate condition (i.e., for lookat
gates, in a direction where ROI is visible; for offscreen gates,
in a direction where ROI is not visible). (3) The transitions
taken along arcs minimize or eliminate ghosting. (4) All arcs
satisfy user-set thresholds on the length of the arcs and on the
perceptual difference of arc transitions. In order to discourage
repetitious or static loops, the arc length threshold requires
all backward arcs to be longer than a minimum threshold
duration. To minimize ghosting and visual artifacts, our tool
allows authors to specify a perceptual threshold, which is the
highest perceptual difference of frames that arcs can have in
order to be considered seamless arcs.

Given these constraints, our goal is to specify the playback
behavior for each combination of frame t and discretized view
direction v. There are only two possibilities from each (v, t):
either play forward to t + 1, or transition backward to some
previous timecode t 0 < t. Our algorithm outputs the action
(play forward to next frame or transition backward to an earlier
frame) to take from each (v, t). Then, during playback, our
player looks up the run-time frame t and the nearest discretized
v, and follows the selected behavior at (v, t).

A naive solution is to create a separate video loop (i.e., one
backward transition arc) for each view direction, except for
those that satisfy the gate condition. That is, for each view
direction v ∈ V, we could independently search for a back-

Figure 6. Another naive solution is to find one loop (i.e. one backward
transition arc) for each view that does not satisfy the gate condition, such
that all the arcs originate at the same timecode. In this example, the
gate timecode is t = T , and the view v = 2 satisfies the gate condition.
Unfortunately, if the originating timecode for all arcs does not equal the
gate timecode T , then the viewer can still get past the gate time through
a view v , 2, as shown by the thick black line, which gives an example of
viewer’s head trajectory (slowly turning their head from v = 4 to v = 0)
that gets past the gate without satisfying the gate condition.

ward arc (v, t, t 0) that minimizes ghosting. Unfortunately, this
approach does not guarantee that the viewer satisfies the gate
condition. As illustrated in Figure 5, it is possible for viewers
to move their heads in a way that allows them to pass the gate
timecode through a view that does not satisfy the gate con-
dition. We also considered a version of this approach which
finds a single timecode t for all backward arcs (with indepen-
dent destination timecodes t 0), but this approach similarly does
not guarantee that viewers satisfy the gate condition. If t is
earlier than the gate timecode, viewers can still get past the
gate timecode T through a view that does not satisfy the gate
condition (Figure 6). Requiring t to occur at the gate timecode
is too restrictive to work for general videos. For example, if a
view (not satisfying the gate condition) is static for all frames
t < T , but an object in the view moved at t = T , then the view
would not have any seamless backward arcs originating at
t = T , even though there are many pairs of frames before T
that can form seamless arcs.

Graph Cut Formulation
We formulate the problem in terms of graph theory, specifically
an s-t graph cut [8, 16, 41]. The graph construction represents
playback as a state machine, but with some modifications, so
that a minimal graph cut produces a solution to our problem
of generating view-dependent video textures for gated clips.

The graph includes one node (v, t) for each pair of view di-
rection and frame in the clip, from the start frame 0 to frame
T + 1, which is the frame immediately after the gate timecode.
Let v ∈ H be the set of views that satisfy the gate condition.
For lookat gates, H is the set of views in which the ROI is
visible; for offscreen gates, H is the set of views in which the
ROI is not visible. We call (v,T), where v ∈ H, gate nodes.

Graph Partition. Our goal is to partition the graph into two
parts, a “safe zone,” which the viewer must stay within before
they satisfy the gate condition, and an “unsafe zone” that the

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

253

v

t t+1 t t+1

v

t B t+1
v-1

v+1

 Single Forward Edgea Multiple Forward Edgesb Using a Bu�er Nodec

∞w w w

t=0 t=1 t=T-1
v=0

v=1

v=2

v=3

...

...

...

...

t=T

...

t=T+1B B B

s t

∞

∞ ∞ ∞
∞

∞ ∞ ∞ 0

Figure 7. (a) A single forward edge between consecutive nodes (v, t) →
(v, t + 1) represents normal video playback of sequential frames but does
not model head rotation. (b) Adding forward edges to adjacent view-
ing directions models head rotation below some velocity—i.e. (v, t) →
(v0 , t + 1), for all v0 ∈ N(v). But cutting these edges corresponds to disal-
lowing some head motions, which we cannot control. (c) A buffer node
(v, t)B (cyan) creates one edge (black) that can be cut (to remove the video
frame advance for this view), while infinite-weight edges (cyan) cannot
be cut (to properly model free user head rotation). The edge weight w is
designed to strongly prefer arcs with perceptual error below the user-set
threshold. More details of how w is determined is in the Appendix.

viewer must not visit before the gate condition is met. The
safe zone must include all nodes at the starting frame (v,0)
as well as the gate nodes, because the viewer can start in any
view direction, and the viewer must be able to visit the gate
nodes in order to satisfy the gate condition. The unsafe zone
must include nodes (v, T +1) for all v, because viewers should
not visit the frame immediately after the gate timecode if the
gate condition has not been satisfied. With this construction,
the viewer can exit the safe zone of the graph only by passing
through a gate node. Otherwise, for boundary nodes in the
safe zone that border the unsafe zone, our graph cut algorithm
finds seamless backward arcs from which to transition back in
time, so that the viewer does not enter the unsafe zone. If the
viewer is at a node in the unsafe zone before the gate condition
is met, they might see ghosting and/or pass through the gate
timecode in a view v < H.

Accounting for Head Motion. At any instant, the viewer
may rotate their head. Hence, from any node (v, t), the view
direction at the next time instant may be from a neighbor
set N(v), determined as a function of the field of view, the
view discretization, and how fast viewers typically rotate their
heads. Based on the work of Bussone [10], we assume a
typical maximum head velocity movement of 9.03 rad/s. For
|V| = 40 and 30fps video, this means that viewers can move
across n = 2 adjacent views in either direction over the course
of one frame interval, and therefore the neighbor set N(v), of
view v contains 5 views including v.

One might imagine representing sequential playback with al-
lowance for head motion by including an edge from each
node (v, t) → (v0 , t + 1), for all v0 ∈ N(v). However, this ap-
proach would allow the graph cut algorithm to cut some of
these edges and not others, which would correspond to allow-
ing some head movements and not others. Since we cannot
control the viewer’s head movements, we cannot use such a
representation. Hence, we introduce buffer nodes (v, t)B be-
tween consecutive nodes (Figure 7). From each node (v, t), we
insert an edge to its buffer node (v, t)B, and, from the buffer
node, we add edges to the subsequent nodes (v0 , t + 1) for
v0 ∈ N(v). The edges (v, t) → (v, t)B are called buffer edges.

Figure 8. Our graph representation of a gated clip. The gate frame
is t = T and the views that satisfy the gate condition are H = {1,2}.
We add buffer nodes (cyan) between consecutive frame nodes. There
are infinite-weighted edges from each buffer node to possible views that
viewers might see at the next frame. In this figure, n = 1 for the num-
ber of adjacent views that viewers can visit in one frame, but in our
result videos we used n = 2. Buffer edges connect each frame node to
its buffer node. Buffer edges of {(v, t)|v ∈ H, t < T } have infinite weight,
while buffer edges of gate notes {(v,T)|v ∈ H} have a weight of 0. Source
node s is connected to the starting frame nodes t = 0 in each view, while
terminal node t is connected to all nodes at t = T + 1. After performing
graph cut, the initial nodes and gate nodes (green) are partitioned from
end nodes (red).

Cutting a buffer edge indicates that, in the output video texture,
the corresponding sequential arc (v, t) → (v, t + 1) is omitted
from the video texture, and that a backward arc must be taken
whenever (v, t) is reached.

Edge Weights. The weight of a buffer edge (v, t) → (v, t)B
depends on the best backward arc available from the node
(v, t), since some backward arcs may introduce more ghosting
than others. The buffer edge weight is designed to strongly
prefer arcs with perceptual error below the user-set threshold.
Details of how we determine buffer edge weights are given in
the Appendix. Edges connecting buffer nodes to subsequent
nodes (v, t)B → (v0 , t + 1) for v0 ∈ N(v) represent the set of
views a viewer might transition into due to head movement.
Since we cannot control viewer’s head motion, these edges
should not be cut, so we assign them a weight of infinity.

If the viewer is looking in a direction v ∈ H that satisfies the
gate condition, they should be able to reach the gate node
(v,T). In other words, all nodes (v, t), where v ∈ H, t < T ,
should play forward (i.e., not traverse backward arcs). Thus,
the buffer edges of these nodes should not be cut, so we set
their weights to infinity.

The s-t graph cut formulation involves a source node s, which
we connect with infinite-weight edges to the nodes that must be
in the safe zone, i.e., initial nodes (v,0) for all view directions
v ∈ V. We do not explicitly connect s to gate nodes, because
they are guaranteed to be partitioned into the safe zone due to
the infinite-weight buffer edges (v, t) → (v, t)B,v ∈ H, t < T .
The sink node t is connected with infinite-weight edges to
all nodes (v,T + 1), which must be in the unsafe zone. The
complete gated clip graph is shown in Figure 8.

In order to perform the s-t graph cut, we need at least one
buffer edge in each v ∈ H to have non-infinite weight, so
we set buffer edge weights of gate nodes (v,T) → (v,T)B
to 0. Consequently, edges (v,T) → (v, T)B are always cut for
v ∈ H. Normally, cutting a buffer edge (v, t) → (v, t)B indicates
that a backward arc must be taken whenever (v, t) is reached.
However, when the viewer reaches one of the gate nodes (v,T),

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

254

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t

Figure 9. The graph cut algorithm may inadvertently create backward
arcs (red arrows) into the “unsafe zone” when there are discontiguous
cuts along a viewing direction. Our post-processing step replaces those
backward arcs with new backward arcs (green arrows) that terminate in
the “safe zone.” The safe zone includes the both gray and purple shaded
regions. However, since the purple frames border the unsafe zone, it is
possible for viewers to turn their head into the unsafe zone as the player
transitions into a purple frame, so our heuristic looks for replacement
arcs that end in the gray shaded area.

where (v,T) → (v,T)B is cut, we simply keep playing forward
to pass the gate, instead of taking a backward arc.

Properties of Cut. The graph-cut algorithm solves for the set
of buffer edges to remove with minimum total cost, such that
the sink node t is not reachable from the source node s. This
partition corresponds to segmenting the graph into a safe zone,
including the start nodes and the gate nodes, and an unsafe
zone, which include paths that violate the gate condition. Our
implementation uses the min-cut solver of Boykov and Kol-
mogorov [8] and takes an average of 0.14 seconds to compute
the cut for the clips we have tested (Table 1).

Postprocessing
Once we run graph-cut on the graph, our video player extracts
from the resulting partition a binary decision for each node:
whether to (1) play forward sequentially from that frame or
to (2) take a backward arc from that frame. If a buffer edge
(v, t) → (v, t)B is not cut, the video player plays forward se-
quentially from (v, t). As discussed in the Edge Weights sec-
tion, the weight of a buffer edge (v, t) → (v, t)B depends on the
best backward arc available from the node (v, t). So if a buffer
edge (v, t) → (v, t)B is cut, then the video player traverses the
best backward arc from (v, t).

It is possible for our graph cut algorithm to cut edges and
produce backward arcs that end in the unsafe zone, i.e., a node
that the viewer is not meant to reach before satisfying the gate
condition. As shown in Figure 9, when there are discontiguous
cuts along a viewing direction, it is possible for some backward
arcs in that view to end on a node which is partitioned into
the unsafe zone. We use the following heuristic post-process
to correct these cases. We first identify the origin timecode
tC of the earliest backward arc along view direction v (tC =
min{(v,t,t 0)} t). We are guaranteed that all nodes before this
time are in the “safe zone.” Thus, we replace each backward
arc (v, t, t 0) that ends after tC (t 0 > tC), with the best backward
arc from (v, t) that ends before tC. This approach can produce

Invasion! Stranger Things

Wild Lions

Murder Mystery

Figure 10. Stills from our example videos. The first four were
professionally-created videos, not intended for use with gated clips. The
fifth we shot for this project.

video textures with some poor backward arcs; we highlight
such poor backward arcs in the user interface, and the user
may perform further adjustments to generate better results,
i.e., re-run the algorithm with different parameters (e.g., gate
timecode, ROI, arc length) .

Forward Arcs to the Gate
Our graph-cut algorithm creates backward arcs in views that
do not satisfy the gate condition, i.e., v < H. If the viewer looks
at a view v ∈ H, by default our player just plays normally until
the viewer reaches the gate timecode. However, this may take
some time, and the filmmaker may want the viewer to get to
the gate timecode as soon as they look in the right direction.
Thus, we provide filmmakers with the option to add forward
arcs to views v that satisfy the gate condition. The forward
arcs allow playback to jump directly to the gate when the
viewer is in a view v ∈ H without forcing them to wait for
the remaining duration of the gated clip. If the author selects
this option, our system automatically adds forward arcs to all
nodes (v, t),v ∈ H, t < T −0.5 sec for which the transition cost
from (v, t) to (v,T − 0.5 sec) is below a user-set perceptual
threshold. We set forward arcs to jump to 0.5 seconds before
the gate timecode to allow the transition cross-dissolve to
finish by the time the viewer gets to the gate.

EXAMPLE VIDEOS
We used our editing tool to add gated clips to five 360◦ videos
(Figure 10). We selected a range of video genres and scenarios
and varied our gate types to demonstrate a range of narrative
use cases, detailed in Table 1. We created four videos (Inva-
sion!, Stranger Things, Wild, and Lions) based on existing,
professional videos, and shot the fifth video (Murder Mystery)
ourselves. Note that the professional videos were not shot
with gating in mind; we added gating in order to demonstrate

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

255

our method. We cut each video down to one or two minutes in
length. For each video we created three gated clips and made
sure to place the gate at important story events.

We authored audio manually for the gated clips. By default,
we cross-dissolved the audio during transitions, just as we
cross-dissolved the video; we used this approach for “Stranger
Things,” “Wild,” and “Murder Mystery.” For “Lions,” the nar-
rator sometimes speaks during a gated clip. To avoid looping
the narration, we played the audio normally (without transi-
tions), separate from the visual content which may be looping.
If the gated clip audio ended before the viewer passed the
gate, we paused the audio until the viewer did, after which we
resumed audio with the next clip. For “Invasion!”, the origi-
nal soundtrack includes music; we found that audio dissolves
were jarring, so we muted the audio entirely.

Invasion! [7]. We added lookat gates to focus the user’s atten-
tion at three key moments: the rabbit’s entrance in the opening
scene, the aliens’ comedic entrance from the spaceship, and
the aliens’ attempt to attack the rabbit. The lookat gates help
pace the story as the viewer looks back and forth between the
rabbit and the aliens.

Stranger Things [33]. In this video, the viewer starts out in
the living room. The camera then automatically moves first to-
wards the dining room, and then in an opposite direction down
a hallway. We used a lookat gate to ensure that viewers look
at the dining room and down the hallway before the camera
starts moving, so that they are looking in the direction they
move towards. Otherwise, the unanticipated camera motion
could be confusing and disorienting. We used a lookat gate to
ensure that the viewer turns around before the monster attacks
the viewer.

Wild [14]. In this video, a hiker rests on a rock and sees the
“ghost” of her mother, who appears and disappears opposite
the hiker. The viewer must look back and forth to see one and
then the other. We added two lookat gates; one for the hiker
when the ghost appears, so that viewers see the main character
and do not witness the ghost’s appearance, and subsequently
one for the ghost. Finally, we added an offscreen gate with
forward arcs, so the ghost immediately disappears when the
viewer looks away.

National Geographic Lions [32]. In this documentary, the
narrator occasionally refers to specific lions within a group,
who each briefly become the main character. We added lookat
gates to wait for the viewer to look at the correct lion before
allowing the narration for that lion to begin. In addition, we
added a lookat gate right before a lion attacked another lion,
to ensure viewers see this important action.

Murder Mystery. This video is similar to Wild, in that a ghost
appears opposite from the main character (with the viewer in-
between the characters) and disappears when the character
looks away; however, there is more background motion which
makes looping more difficult. We add a lookat and an offscreen
gate for the ghost’s appearance and disappearance, as well
as another lookat gate for the position where the ghost was
standing, so the viewer sees that the ghost has vanished.

Video Genre Length (sec), Type
1st 2nd 3rd

Invasion!
Lions
Stranger Things
Wild
Murder Mystery

Comedy
Docu.
Horror
Drama
Mystery

7 L
7 L
4 L

10 L
6 L*

7 L
4 L
5 L
3 L
4 O*

4 L
5 L
4 L
7 O*
7 L*

Table 1. Summary of example videos. For each video, we added three
gated clips. We show the length (in seconds) and type of each gated clip.
L: lookat gate, O: offscreen gate, *: enabled forward arcs.

Our source code and the gated clip metadata used to produce
these examples are available at the project website: https:
//lseancs.github.io/viewdepvrtextures/

USER STUDY
In order to understand the effects of gated clips, we asked
viewers to watch the five videos described in the previous sec-
tion, and conducted a study to obtain qualitative feedback on
their viewing experience. While the videos we used include
some passive gaze guidance cues, we did not explicitly com-
pare our method to passive (e.g., Nielsen et al. [34]) or active
([20,29,36]) gaze guidance techniques, because our method is
complementary to them. Our method guarantees viewers see
the ROI, whereas passive techniques do not. Active guidance
techniques guarantee viewers see a ROI, but they also limit
viewer interaction and can reduce immersion, as Nielsen et al.
observed, whereas our method does not.

For the study, we used gated clips produced by an earlier
version of our system, in which the vertical FOV of each dis-
cretized view was equal to the Oculus Rift FOV (h = 96.02◦),
instead of the the full vertical range of h = 180◦ . Using a ver-
tical FOV smaller than the full height might introduce visual
artifacts if the viewer looks up or down beyond the view FOV.
However, since there was virtually no motion near the poles
of these videos, the smaller vertical FOV was not a problem.
See Discussion Section for more details on choosing view
discretization and FOV.

Each participant watched each of the five videos in one of two
conditions: either a Gated version or a Standard (non-looping)
version; participants only saw one version of each video. The
ordering and condition were random. Each participant saw
at least one video in each condition. They watched videos
on an Oculus Rift VR headset, while we recorded their head
orientation data.

In pilot experiments, in an attempt to single-blind the study,
we did not explain the two conditions (Gated and Standard) to
the participants. However, we found that because they did not
understand the conditions and how they were different, they
could not specify which version they preferred. Thus, in order
to capture viewers’ preferences between Standard and Gated
clips, in our main study we informed participants as to which
version of each video they were watching.

Before beginning the study, we explained to participants the
two versions of videos they might watch; “Standard” version
for normal video playback, and “View-Dependent” (Gated)
version in which playback would wait for them if they were

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

256

https://lseancs.github.io/viewdepvrtextures/
https://lseancs.github.io/viewdepvrtextures/

Figure 11. User study scores comparing Standard and Gated clips in
three categories: (1) how easy it was to follow the story, (2) how stress-
ful it was to follow the story (7 for least stressful), and (3) how inter-
ested they were in the stories. Confidence intervals are computed as
2×Standard Error. We found significant differences between the scores
for “how easy” and “how stressfull”, as indicated by the *’s, but not for
“how interested”.

looking in the wrong direction when an important story ele-
ment occurs. Before showing each video, we only told partici-
pants whether the video was “Standard” or “View-Dependent.”

After each video, participants removed the headset and took a
break while filling out a questionnaire. We asked the partic-
ipants to describe the story in their own words and to share
feedback on how natural they thought the video playback was.

After all 5 videos were shown, we asked participants to com-
plete a survey comparing the Standard and Gated versions
on three 7-point Likert items: how easy it was to follow the
stories, how stressful it was to follow the stories, and how
interested they were in the stories. At the end, the survey
included a binary-choice question asking which version they
preferred overall and also included free-response questions
asking what they liked and disliked about each version.

There were a total of 11 (5 female and 6 male) participants,
with ages ranging from 24 to 36. All participants had some
level of prior VR experience, such as watching VR videos
or playing VR games. All except one participant watched
all 5 videos; one participant preferred not to watch a VR
horror video (Stranger Things) but watched the other 4 videos.
We instructed participants to stop if they felt sick, but no
participants reported sickness during the study.

Study Results
Overall Preference: Standard vs Gated Clips. Most par-
ticipants (9 out of 11) preferred the Gated videos over the
Standard videos. Only one participant preferred the Standard
version, because they thought the Gated videos shown were
slow (however, their complaints were largely about the pacing
in the Gated version of the Lions video). The other participant
was ambivalent: they preferred the Standard version if there
were strong guidance cues on where to look, but if there were
no strong cues, and if the event triggered immediately after
they looked at the right thing, they preferred the Gated version.

How Easy, Stressful, Interesting? Participants scored the
Standard and Gated versions in three 7-point Likert items:
how easy it was to follow the stories, how stressful it was
to follow the stories, and how interested they were in the
stories (Figure 11). For each category, we performed the
Wilcoxon signed-rank test on each pair of answers (Standard
and Gated) from the same person. We applied continuity
correction by adjusting the Wilcoxon rank statistic by 0.5
towards the mean value when computing the z-statistic [24].
For “how easy,” there was significant preference for the Gated
version (p < 0.009, W = 1.5, r = 0.02). For “how stressful,”
there was a significant preference for Gated version being less
stressful (p < 0.03, W = 5, r = 0.076). We found no statistical
significance in the “how interested” answers.

Standard vs Gated Clips: Likes and Dislikes. Most partici-
pants liked the Standard video because it did not hold up the
story and had better flow, but they did not like the fact that
they had to worry about missing important narrative elements.
They liked the Gated video for being able to explore scenes at
their own pace without worrying they might miss something.
One stated reason for disliking the Gated version was having
to look around and figure out what to look at to trigger the
next event. Some participants disliked the fact that sometimes
looking at the right thing did not immediately trigger the next
story event. This happened occasionally when the clip they
watched did not have seamless forward jump arcs to take them
to right before the gate time; in such cases, they had to wait
until the video played normally to the gate timecode.

How Natural was the Playback? Most participants inter-
preted the question “how natural did the playback seem to you”
broadly, answering in terms of how natural the story content
was, how natural it felt to have the interactive component in
the story, or how natural the size of characters in the stories ap-
peared to them (e.g., the rabbit from Invasion! was larger than
real-life rabbits). Some participants were not accustomed to
live-action videos waiting for them (e.g., the character breath-
ing and waiting), and so thought the interactive aspect was
unnatural. Only one participant noticed a ghosting artifact of
two distant, moving pedestrians in the Murder Mystery video.
In the original video, the two pedestrians walk steadily away
from the camera the entire clip (which does not provide a
view-dependent video texture an opportunity to loop), and in
the postprocess stage, our tool could not find good backward
arcs that end before the earliest cut tC.

ROI Hit Rate for Standard Clips. In addition to the qualita-
tive feedback, we also analyzed the head orientation data of
all participants. In Gated versions of videos, participants had
to see the ROI at the corresponding gate timecodes in order to
proceed. We checked how often participants who watched the
Standard version missed the ROI at the same gate timecodes.
Overall, only an average of 61.9% of participants saw the ROI
at the corresponding times (σ = 31.4%).

Time Elapsed for Gated Clips. We also looked at how long
it took participants to pass a gate, relative to the length of
the gated clip without any looping. For Gated clips in which
forward arcs were not enabled, we found that participants took
on average 2.25 times the original clip length to pass the gate

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

257

(σ = 1.77, average delay of 7.9s). For Gated clips in which
forward arcs were enabled, participants took 1.79 times the
clip length to pass the gate (σ = 1.15, average delay of 4.7s).
However, this varied considerably; for example, in the second
gate of Murder Mystery, viewers passed the gate faster with
forward arcs than with the Standard version.

DISCUSSION
User Study Conclusions. In our user study, most viewers re-
ported they preferred Gated videos over Standard ones. Over-
all, they find it easier and less stressful to follow stories in
Gated than in Standard videos. However, because participants
were aware of which videos were produced by our system,
their feedback may be biased. The study indicated that a dis-
advantage for Gated videos was the need to figure out where
to look in order to pass a gate. Thus, we suggest filmmakers
use gaze guidance techniques in conjunction with our gating
method, such as motion or lighting cues [18], in order to direct
viewers’ attention.

Design Choices for Gated Video. In order to produce video
textures that create a good experience, we recommend direc-
tors take the looping structure into account when creating
gated clips. In particular, directors should pay attention to
structured (i.e., non-periodic, non-stochastic) motion within
the scene. Views that do not satisfy the gate condition need to
be looped, so the director should design the shot, e.g., shoot
for a longer period, so that those views have some period of
time with no structured motion. For example, video of a car
moving across one view cannot be seamlessly looped, because
no two frames have the car in the same position. However,
if the director films for a longer period of time and captures
additional footage of the car moving out of the view, or of the
car coming to a stop within the view, then our method could
find seamless loops using just the frames after the car leaves,
or of the car at rest.

Our method may loop structured motion spanning multiple
views. For example, consider a car moving from left to right
across most of the scene. In a middle view between the start-
ing and ending views of the car our system might generate a
backward arc transitioning from a frame after the car leaves
the view to a frame before the car enters the view. A viewer
looking at this middle view might then see the car pass through
the scene repeatedly. If the car is in the background, it may be
fine for viewers to see the car loop in this manner. However, if
the car is an important object that the director wants viewers
to see, then seeing the car repeat its motion could be confus-
ing. Thus, the director should choose the gate time and ROI
carefully in such cases. For example, in the Patio video from
our supplemental material, a character stands on the right side
of the scene, walks to the left side, and stops. If the director
places the ROI on the character after she comes to a stop, the
graph-cut algorithm produces arcs that loop the walk, which
may not be desirable. If the director instead places the gate
ROI on the character before she starts walking, as shown in
our supplemental material, the director can prevent viewers
from seeing the walk loop repeatedly.

Number of View Discretizations & View FOV. The director
should consider the trade-offs when choosing parameters for

the number of view discretizations |V| and the FOV per view
vi=1...|V|. Recall that, during playback, our video player looks
up the nearest discretized vi and follows the arcs in vi. Thus,
increasing |V| increases the chance that, at run-time, the actual
viewer’s FOV will completely overlap with a view vi, and
thereby reduces the chance of seeing artifacts when following
arcs in vi. However, a larger number of views also increases
computational cost.

Arc computations for each view only consider the pixels within
the view FOV. Thus, a view FOV that is smaller than the FOV
of the head-mounted display (HMD) may introduce artifacts
during playback, since the HMD would show pixels that fall
outside of the corresponding view FOV when playing loops.
A view FOV that is larger than the HMD FOV makes arc
computations more conservative and reduces the flexibility in
finding seamless arcs, since it includes costs of pixels that fall
outside the HMD FOV which viewers actually see. In our
examples, we used |V| = 40 and a view FOV of (w = 80.65◦ ,
h = 180◦), which we found to be a good trade-off.

LIMITATIONS AND FUTURE WORK
Our algorithm does not account for audio when generating the
view-dependent video textures. By default, our tool simply
cross-dissolves the audio during transitions; we have found
that this approach usually hides the seams in the loops well for
ambient or environmental audio. For clips that have structured
audio, directors may need to handle the audio tracks separately
when generating gated clips. For example, music tracks could
be looped independent of the video [39], whereas audio cues
must be carefully synced. Future work could explore ways of
looping audio in conjunction with the video.

While our algorithm can loop structured motion spanning
multiple views, it may not be able to find seamless loops for
intra-view structured motion, i.e., structured motion contained
within one view. Future work could improve the applicabil-
ity of our approach, by combining view-dependent arcs with
motion segmentation and/or using frame synthesis for better
looping video generation. For instance, if a view contains
two people performing different repetitive actions, our method
may not be able to find a seamless loop, but segmentation
approaches [22, 40] could segment the two people and loop
them separately. Frame synthesis could generate new frames
to increase looping flexibility within a view.

Gated clips open up a considerable design space for the film-
maker to work within when creating their desired experience.
For example, should the viewer be required to dwell on the
ROI for the gate to be passed? Should it be sufficient that the
viewer has seen the ROI at some time in the past? In theory,
a gate could be used for every single important moment in
the story, but such an arrangement might introduce awkward
pauses and disrupt the pacing of the story, so there is also a
space for determining where and how to place gates in a narra-
tive. Future work could examine how different types of gate
conditions and combinations thereof help achieve a variety of
narrative goals.

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

258

ACKNOWLEDGMENTS
We thank Geoffrey Oxholm for his help; Baobab Studios, Net-
flix, Felix & Paul Studios, Fox, and IVAR studios for giving us
permission to use their videos; Mitchell L. Gordon and Jane E
for acting in our Murder Mystery video; Jingyi Li and Jane E
for their help with assembling figures and videos; Xinwei Yao
for helpful discussions; and all of our user study participants
for their valuable feedback. This work was partially supported
by the David and Helen Gurley Brown Institute for Media
Innovation.

REFERENCES
[1] Advanced Microcomputer Systems. 1983. Dragon’s Lair.

Cinematronics [Arcade version]. (1983).

[2] Advanced Microcomputer Systems. 1984. Space Ace.
Cinematronics [Arcade version]. (1984).

[3] Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh
Agrawala, Michael Cohen, Brian Curless, David Salesin,
and Richard Szeliski. 2005. Panoramic Video Textures.
In ACM SIGGRAPH 2005 Papers (SIGGRAPH ’05).
ACM, New York, NY, USA, 821–827. DOI:
http://dx.doi.org/10.1145/1186822.1073268

[4] Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and
Ravi Ramamoorthi. 2012. Selectively De-animating
Video. ACM Trans. Graph. 31, 4, Article 66 (July 2012),
10 pages. DOI:
http://dx.doi.org/10.1145/2185520.2185562

[5] Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and
Ravi Ramamoorthi. 2013. Automatic Cinemagraph
Portraits. (2013), 17–25. DOI:
http://dx.doi.org/10.1111/cgf.12147

[6] Reynold Bailey, Ann McNamara, Nisha Sudarsanam,
and Cindy Grimm. 2009. Subtle Gaze Direction. ACM
Trans. Graph. 28, 4, Article 100 (Sept. 2009), 14 pages.
DOI:http://dx.doi.org/10.1145/1559755.1559757

[7] Baobab Studios. 2016. Invasion! (2016).
https://www.baobabstudios.com/invasion.

[8] Yuri Boykov and Vladimir Kolmogorov. 2004. An
Experimental Comparison of Min-Cut/Max-Flow
Algorithms for Energy Minimization in Vision. IEEE
Trans. Pattern Anal. Mach. Intell. 26, 9 (Sept. 2004),
1124–1137. DOI:
http://dx.doi.org/10.1109/TPAMI.2004.60

[9] Gerd Bruder, Frank Steinicke, Phil Wieland, and
Markus Lappe. 2012. Tuning Self-Motion Perception in
Virtual Reality with Visual Illusions. IEEE Transactions
on Visualization and Computer Graphics 18, 7 (July
2012), 1068–1078. DOI:
http://dx.doi.org/10.1109/TVCG.2011.274

[10] William R. Bussone. 2005. Linear and Angular Head
Accelerations in Daily Life. Master’s thesis. Virginia
Polytechnic Institute and State University, Blacksburg,
Virginia. http://hdl.handle.net/10919/34615

[11] Shenchang Eric Chen. 1995. QuickTime VR: An
Image-based Approach to Virtual Environment

Navigation. In Proceedings of the 22Nd Annual
Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’95). ACM, New York, NY,
USA, 29–38. DOI:
http://dx.doi.org/10.1145/218380.218395

[12] Stephen Chenney and David Forsyth. 1997.
View-dependent Culling of Dynamic Systems in Virtual
Environments. In Proceedings of the 1997 Symposium
on Interactive 3D Graphics (I3D ’97). ACM, New York,
NY, USA, 55–58. DOI:
http://dx.doi.org/10.1145/253284.253307

[13] Franklin C. Crow. 1984. Summed-area Tables for
Texture Mapping. In Proceedings of the 11th Annual
Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’84). ACM, New York, NY,
USA, 207–212. DOI:
http://dx.doi.org/10.1145/800031.808600

[14] Felix & Paul Studios. 2015. Wild: The Experience.
(2015). https://www.felixandpaul.com/?projects/wild.

[15] Matthew Flagg, Atsushi Nakazawa, Qiushuang Zhang,
Sing Bing Kang, Young Kee Ryu, Irfan Essa, and
James M. Rehg. 2009. Human Video Textures. In
Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games (I3D ’09). ACM, New York, NY,
USA, 199–206. DOI:
http://dx.doi.org/10.1145/1507149.1507182

[16] Lester Randolph Ford Jr. and Delbert Ray Fulkerson.
1962. Flows in networks. RAND Corporation, Santa
Monica, CA.
https://books.google.com/books?id=fw7WCgAAQBAJ Report
number R-375-PR.

[17] Google ATAP. 2019. Google Spotlight Stores. (2019).
https://atap.google.com/spotlight-stories/.

[18] Steve Grogorick, Georgia Albuquerque, and Marcus A.
Magnor. 2018. Comparing Unobtrusive Gaze Guiding
Stimuli in Head-Mounted Displays. In 2018 IEEE
International Conference on Image Processing, ICIP
2018, Athens, Greece, October 7-10, 2018. IEEE,
Athens, Greece, 2805–2809. DOI:
http://dx.doi.org/10.1109/ICIP.2018.8451784

[19] Steve Grogorick, Michael Stengel, Elmar Eisemann, and
Marcus Magnor. 2017. Subtle Gaze Guidance for
Immersive Environments. In Proceedings of the ACM
Symposium on Applied Perception (SAP ’17). ACM,
New York, NY, USA, Article 4, 7 pages. DOI:
http://dx.doi.org/10.1145/3119881.3119890

[20] Jan Gugenheimer, Dennis Wolf, Gabriel Haas, Sebastian
Krebs, and Enrico Rukzio. 2016. A Demonstration of
SwiVRChair: A Motorized Swivel Chair to Nudge
Users’ Orientation for 360 Degree Storytelling in Virtual
Reality. In Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct (UbiComp ’16). ACM, New York,
NY, USA, 281–284. DOI:
http://dx.doi.org/10.1145/2968219.2971363

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

259

http://dx.doi.org/10.1145/1186822.1073268
http://dx.doi.org/10.1145/2185520.2185562
http://dx.doi.org/10.1111/cgf.12147
http://dx.doi.org/10.1145/1559755.1559757
https://www.baobabstudios.com/invasion
http://dx.doi.org/10.1109/TPAMI.2004.60
http://dx.doi.org/10.1109/TVCG.2011.274
http://hdl.handle.net/10919/34615
http://dx.doi.org/10.1145/218380.218395
http://dx.doi.org/10.1145/253284.253307
http://dx.doi.org/10.1145/800031.808600
https://www.felixandpaul.com/?projects/wild
http://dx.doi.org/10.1145/1507149.1507182
https://books.google.com/books?id=fw7WCgAAQBAJ
https://atap.google.com/spotlight-stories/
http://dx.doi.org/10.1109/ICIP.2018.8451784
http://dx.doi.org/10.1145/3119881.3119890
http://dx.doi.org/10.1145/2968219.2971363

[21] Hajime Hata, Hideki Koike, and Yoichi Sato. 2016.
Visual Guidance with Unnoticed Blur Effect. In
Proceedings of the International Working Conference on
Advanced Visual Interfaces (AVI ’16). ACM, New York,
NY, USA, 28–35. DOI:
http://dx.doi.org/10.1145/2909132.2909254

[22] Mingming He, Jing Liao, Pedro V. Sander, and Hugues
Hoppe. 2017. Gigapixel Panorama Video Loops. ACM
Trans. Graph. 37, 1, Article 3 (Nov. 2017), 15 pages.
DOI:http://dx.doi.org/10.1145/3144455

[23] Corneliu Ilisescu, Halil Aytac Kanaci, Matteo
Romagnoli, Neill D. F. Campbell, and Gabriel J.
Brostow. 2017. Responsive Action-based Video
Synthesis. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI ’17).
ACM, New York, NY, USA, 6569–6580. DOI:
http://dx.doi.org/10.1145/3025453.3025880

[24] Eric Jones, Travis Oliphant, Pearu Peterson, and others.
2001–. SciPy: Open source scientific tools for Python.
(2001–). http://www.scipy.org/

[25] Neel Joshi, Sisil Mehta, Steven Drucker, Eric Stollnitz,
Hugues Hoppe, Matt Uyttendaele, and Michael Cohen.
2012. Cliplets: Juxtaposing Still and Dynamic Imagery.
In Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology (UIST ’12).
ACM, New York, NY, USA, 251–260. DOI:
http://dx.doi.org/10.1145/2380116.2380149

[26] Philippe Levieux, James Tompkin, and Jan Kautz. 2012.
Interactive Viewpoint Video Textures. In Proceedings of
the 9th European Conference on Visual Media
Production (CVMP ’12). ACM, New York, NY, USA,
11–17. DOI:http://dx.doi.org/10.1145/2414688.2414690

[27] Jing Liao, Mark Finch, and Hugues Hoppe. 2015. Fast
Computation of Seamless Video Loops. ACM Trans.
Graph. 34, 6, Article 197 (Oct. 2015), 10 pages. DOI:
http://dx.doi.org/10.1145/2816795.2818061

[28] Zicheng Liao, Neel Joshi, and Hugues Hoppe. 2013.
Automated Video Looping with Progressive Dynamism.
ACM Trans. Graph. 32, 4, Article 77 (July 2013), 10
pages. DOI:http://dx.doi.org/10.1145/2461912.2461950

[29] Yen-Chen Lin, Yung-Ju Chang, Hou-Ning Hu,
Hsien-Tzu Cheng, Chi-Wen Huang, and Min Sun. 2017a.
Tell Me Where to Look: Investigating Ways for
Assisting Focus in 360◦ Video. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems (CHI ’17). ACM, New York, NY, USA,
2535–2545. DOI:
http://dx.doi.org/10.1145/3025453.3025757

[30] Yung-Ta Lin, Yi-Chi Liao, Shan-Yuan Teng, Yi-Ju
Chung, Liwei Chan, and Bing-Yu Chen. 2017b.
Outside-In: Visualizing Out-of-Sight
Regions-of-Interest in a 360◦ Video Using Spatial
Picture-in-Picture Previews. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’17). ACM, New York, NY, USA,
255–265. DOI:
http://dx.doi.org/10.1145/3126594.3126656

[31] Andrew Lippman. 1980. Movie-maps: An Application
of the Optical Videodisc to Computer Graphics.
SIGGRAPH Comput. Graph. 14, 3 (July 1980), 32–42.
DOI:http://dx.doi.org/10.1145/965105.807465

[32] National Geographic. 2017. Lions 360◦ . (2017).
https://www.youtube.com/watch?v=sPyAQQklc1s.

[33] Netflix. 2016. Stranger Things: Virtual Reality / 360
Experience. (2016).
https://www.youtube.com/watch?v=yg29RvYNSDQ.

[34] Lasse T. Nielsen, Matias B. Møller, Sune D. Hartmeyer,
Troels C. M. Ljung, Niels C. Nilsson, Rolf Nordahl, and
Stefania Serafin. 2016. Missing the Point: An
Exploration of How to Guide Users’ Attention During
Cinematic Virtual Reality. In Proceedings of the 22nd
ACM Conference on Virtual Reality Software and
Technology (VRST ’16). ACM, New York, NY, USA,
229–232. DOI:
http://dx.doi.org/10.1145/2993369.2993405

[35] Peter J. Passmore, Maxine Glancy, Adam Philpot,
Amelia Roscoe, Andrew Wood, and Bob Fields. 2016.
Effects of Viewing Condition on User Experience of
Panoramic Video. In Proceedings of the 26th
International Conference on Artificial Reality and
Telexistence and the 21st Eurographics Symposium on
Virtual Environments (ICAT-EGVE ’16). Eurographics
Association, Goslar Germany, Germany, 9–16. DOI:
http://dx.doi.org/10.2312/egve.20161428

[36] Amy Pavel, Björn Hartmann, and Maneesh Agrawala.
2017. Shot Orientation Controls for Interactive
Cinematography with 360 Video. In Proceedings of the
30th Annual ACM Symposium on User Interface
Software and Technology (UIST ’17). ACM, New York,
NY, USA, 289–297. DOI:
http://dx.doi.org/10.1145/3126594.3126636

[37] Rocksteady Studios. 2016. Batman: Arkham VR.
(2016). http://rocksteadyltd.com/#arkham-vr.

[38] Christoph Alexander Rosenberg. 2017. Over There!
Visual Guidance in 360-Degree Videos and Other
Virtual Environments. Master’s thesis. Universität des
Saarlandes. https://umtl.cs.uni-saarland.de/files/
thesis_ma_christoph-rosenberg_compressed.pdf

[39] Steve Rubin and Maneesh Agrawala. 2014. Generating
Emotionally Relevant Musical Scores for Audio Stories.
In Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST ’14).
ACM, New York, NY, USA, 439–448. DOI:
http://dx.doi.org/10.1145/2642918.2647406

[40] Arno Schödl, Richard Szeliski, David H. Salesin, and
Irfan Essa. 2000. Video Textures. In Proceedings of the
27th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’00). ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 489–498. DOI:
http://dx.doi.org/10.1145/344779.345012

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

260

http://dx.doi.org/10.1145/2909132.2909254
http://dx.doi.org/10.1145/3144455
http://dx.doi.org/10.1145/3025453.3025880
http://www.scipy.org/
http://dx.doi.org/10.1145/2380116.2380149
http://dx.doi.org/10.1145/2414688.2414690
http://dx.doi.org/10.1145/2816795.2818061
http://dx.doi.org/10.1145/2461912.2461950
http://dx.doi.org/10.1145/3025453.3025757
http://dx.doi.org/10.1145/3126594.3126656
http://dx.doi.org/10.1145/965105.807465
https://www.youtube.com/watch?v=sPyAQQklc1s
https://www.youtube.com/watch?v=yg29RvYNSDQ
http://dx.doi.org/10.1145/2993369.2993405
http://dx.doi.org/10.2312/egve.20161428
http://dx.doi.org/10.1145/3126594.3126636
http://rocksteadyltd.com/#arkham-vr
https://umtl.cs.uni-saarland.de/files/thesis_ma_christoph-rosenberg_compressed.pdf
https://umtl.cs.uni-saarland.de/files/thesis_ma_christoph-rosenberg_compressed.pdf
http://dx.doi.org/10.1145/2642918.2647406
http://dx.doi.org/10.1145/344779.345012

[41] Robert Sedgewick. 2001. Algorithms in C++ Part 5:
Graph Algorithms (3rd Edition). Addison-Wesley
Professional, Reading, Massachusetts.
https://books.google.com/books?id=0rLN_tcvD-IC

[42] Alia Sheikh, Andy Brown, Zillah Watson, and Michael
Evans. 2016. Directing attention in 360-degree video. In
IBC 2016 Conference. IBC, Amsterdam, Netherlands,
29–37. DOI:http://dx.doi.org/10.1049/ibc.2016.0029

[43] Travis Stebbins and Eric D. Ragan. 2019. Redirecting
View Rotation in Immersive Movies with Washout
Filters. In Proceedings of the IEEE Virtual Reality.
IEEE, Osaka, Japan, Article 1193, 11 pages.
https://www.cise.ufl.edu/~eragan/papers/
Stebbins-VR2019-redirected-movies.pdf

[44] Zhaolin Su and Shigeo Takahashi. 2010. Real-time
Enhancement of Image and Video Saliency using
Semantic Depth of Field. In International Conference on
Computer Vision Theory and Applications (VISAPP) (2).
INSTICC, Angers, France, 370–375.
http://web-ext.u-aizu.ac.jp/~shigeo/research/
enhancement/index-e.html

[45] Marc Van den Broeck, Fahim Kawsar, and Johannes
Schöning. 2017. It’s All Around You: Exploring 360◦
Video Viewing Experiences on Mobile Devices. In
Proceedings of the 25th ACM International Conference
on Multimedia (MM ’17). ACM, New York, NY, USA,
762–768. DOI:
http://dx.doi.org/10.1145/3123266.3123347

[46] Eduardo E. Veas, Erick Mendez, Steven K. Feiner, and
Dieter Schmalstieg. 2011. Directing Attention and
Influencing Memory with Visual Saliency Modulation.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). ACM, New
York, NY, USA, 1471–1480. DOI:
http://dx.doi.org/10.1145/1978942.1979158

[47] Walt Disney Animation Studios. 2018. Cycles.
SIGGRAPH Immersive Pavilion. (2018). Dir. Jeff
Gipson.

[48] Jingxin Zhang, Eike Langbehn, Dennis Krupke,
Nicholas Katzakis, and Frank Steinicke. 2018. Detection
Thresholds for Rotation and Translation Gains in 360◦
Video-Based Telepresence Systems. IEEE Transactions
on Visualization and Computer Graphics 24, 4 (April
2018), 1671–1680. DOI:
http://dx.doi.org/10.1109/TVCG.2018.2793679

APPENDIX

VIEW-DEPENDENT ARC COST COMPUTATION
We now provide more detail into how arc costs are computed.
Recall that an arc is a transition between two frames (t, t 0),
and a view-dependent arc is a transition between two frames
in a particular view v, represented as a triplet (v, t, t 0).

Our goal is to find arcs that transition seamlessly, so that
viewers don’t notice the transitions when they occur. In a pre-
processing step, we assign costs to all possible view-dependent

arcs (v, t, t 0) within a gated clip. The cost measures how seam-
less the arc transition is. As mentioned before, we only con-
sider the field of view that the viewer sees when computing
view-dependent arcs. We first discretize the view-sphere of all
possible viewing directions into V views, and for each view,
compute the costs of all possible arcs within that view. There-
fore, the total number of arcs is V ∗ f 2, where f is the number
of frames in the gated clip.

View-Dependent Arc Cost Matrix
There are f 2 total arcs in each viewing direction, where f is
the number of frames in the gated clip. We construct a cost
matrix of size f × f that represents the arc cost between each
pair of frames.

We define the cost of an arc between two frames for a given
view as follows. Our goal is to penalize visually-noticeable
changes when cross-dissolving between the two frames, such
as a person appearing or disappearing, while ignoring minor
changes due to pixel noise. We then apply a user-defined
threshold to determine if an arc is noticeable or not.

The cost for an arc from time i to time j in view direction k is
a summation over every pixel visible to the view, comparing
the frames before and after the arc, summed over the duration
N of the cross-dissolve:

C(vk, ti, t j) =
N

∑ ∑ d(I`,i+x, I`, j+x) max(e`,i+x,e`, j+x) (1)
x=0 ̀ ∈pixels(k)

where I`,i is the RGB value of pixel ` at time i, and e`,i ∈ [0,1]
is a binary edge map at pixel ` at time i. The edge maps
are computed by Canny edge detection with a 3 × 3 Sobel
filter, and min/max thresholds of 80 and 100 for the intensity
gradient. The difference function ignores pixel differences
below a threshold τ: �

||a− b||2 , ||a − b||2 ≥ τ
d(a,b) = (2)

0, otherwise

where a and b are 3-dimensional vectors that represent RGB
values in the range [0..1]. We use τ = 0.015 to 0.2, depending
on how much high-frequency, stochastic motion there is in the
clip. The τ threshold prevents pixel changes due to stochastic
motion, such as moving tree leaves, from overly penalizing
the arc. Empirically, we found that a clip with no trees in the
foreground works well with τ = 0.015, whereas a clip with
large foreground trees moving in the wind requires a larger
τ = 0.2.

For computational efficiency, we scaled our 360◦ videos in
equirectangular format down to 640 × 320 before computing
the cost matrices. We used a Summed Area Table [13] to
accelerate computation, since the summation otherwise would
include considerable overlapping computations for overlap-
ping views. The Summed Area Table computation for a 7s
30fps clip takes about 3.3 hours to complete on a 3.1 GHz Intel
Core i7 processor, in single-threaded unoptimized Python.

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

261

https://books.google.com/books?id=0rLN_tcvD-IC
http://dx.doi.org/10.1049/ibc.2016.0029
https://www.cise.ufl.edu/~eragan/papers/Stebbins-VR2019-redirected-movies.pdf
https://www.cise.ufl.edu/~eragan/papers/Stebbins-VR2019-redirected-movies.pdf
http://web-ext.u-aizu.ac.jp/~shigeo/research/enhancement/index-e.html
http://web-ext.u-aizu.ac.jp/~shigeo/research/enhancement/index-e.html
http://dx.doi.org/10.1145/3123266.3123347
http://dx.doi.org/10.1145/1978942.1979158
http://dx.doi.org/10.1109/TVCG.2018.2793679

BUFFER EDGE COSTS
We describe in more detail how buffer edge costs are assigned
in our graph cut formulation. For views in the direction of the
gate (v ∈ H), we set the buffer edge weights to infinity for all
timecodes t ∈ 1 : T − 1.

For views v < H, by default, we set the weight of the buffer
edge from (v, t) to (v, t)B to the cost of the best backward
arc (lowest-cost) from this node, from among all backward
arcs that satisfy the user-specified minimum backward arc
length. The user specifies a threshold γ for how large a cost

where M is the minimum loop length in number of frames.
ω1 assigns a small penalty (between 0 and 2) based on how
close the node is to the ends of the contiguous block as well
as the block length, and ω2 assigns a small penalty based on
whether the block it is in has complete overlap with any block
in neighboring views. Let D(v, t) represent the contiguous

�

block of safe nodes that node (v, t) is in.

α = min(t − Dstart(v, t), Dend(v, t) − t)� (4)
Dlength(v, t)

β = min K, (5)
2is perceptually acceptable. If a node (v, t) has a backward arc

with C(v, t, t 0) < γ , we call the node a safe node; otherwise, we
⎧⎨ ⎩⎧⎨ ⎩

Dlength(v, t)
2 (6)

1, if β = call it an unsafe node. With our view discretization and FOV, it φ =
is possible that the viewer’s FOV may partially extend outside
the FOV used to compute an arc cost, so even though C(v, t, t 0)

0, otherwise
α
+ φ , α ≤ βmay be less than γ , C(v + ε, t, t 0) may not be and may have

ghosting in the periphery. Hence, we prefer taking arcs from
1 −

βω1(v, t) = (7)
0, otherwisenodes that are neighbored by safe nodes, in order to decrease

the likelihood of peripheral ghosting.

Thus, to compute the buffer edge weight EB(v, t), we find
contiguous blocks of safe nodes in each viewing direction, i.e.,
each row of the graph (Figure 8), and add a small penalty to
arcs of safe nodes that are within K frames near the ends of
the blocks, or do not fully overlap with any blocks in adjacent
views:

EB(v, t) =

0
ω2(v, t) = α ∑ maxδ (D(v, t) ⊆ D(v , t 0)) (8)

t 0 v0∈N(v)

where δ is an indicator function that shows whether the frames
of the first block is a subset of the frames in the second block.
α is the amount of penalty for each neighbor in which the
block D(v, t) is not a subset of. We used α = 0.1 and K = 15.
This heuristic reduces the chance of getting bad arcs in the
post-process step, because it favors cutting on sequential arcs
in the contiguous blocks, as opposed to arcs of non-contiguous,

∞, if v ∈ H isolated safe nodes. For large contiguous blocks of safe nodes,
⎧ ⎪⎨ ⎪⎩

ω1(v, t)+ ω2(v, t), if v < H and (v, t) is safe (3) it is likely that the frames have similar levels of motion (e.g.,
static), so safe nodes in large contiguous blocks are more likely
to have a good backward arc that ends at or before the first

min C(v, t, t 0), if v < H and (v, t) is unsafe
t 0≤t−M

safe node of that block.

Session 2B: Media Authoring

UIST '19, October 20–23, 2019, New Orleans, LA, USA

262

	Introduction
	Related Work
	Interactive and looping video
	Gaze guidance
	View-dependent 360-degree video and animation

	Gated Clips
	Types of gates

	View-Dependent Video Textures
	Generating View-Dependent Textures
	Graph Cut Formulation
	Postprocessing
	Forward Arcs to the Gate

	Example Videos
	User Study
	Study Results

	Discussion
	Limitations and Future Work
	Acknowledgments
	References
	View-Dependent Arc Cost Computation
	View-Dependent Arc Cost Matrix

	Buffer Edge Costs

