Bridges Baltimore, July 2015

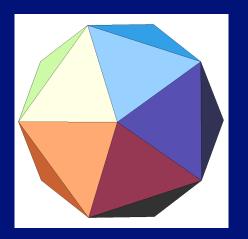
Large, "7-Around" Hyperbolic Disks

Sean Jeng Liu, Young Kim, Raymond Shiau, Carlo H. Séquin

University of California, Berkeley

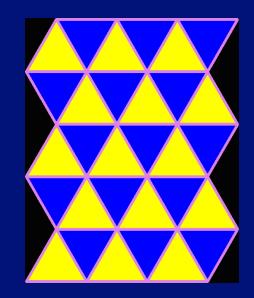
Assembling Equilateral Triangles

5 per vertex:



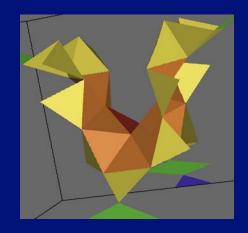
pos. curved: \rightarrow lcosahedron

6 per vertex:



flat:

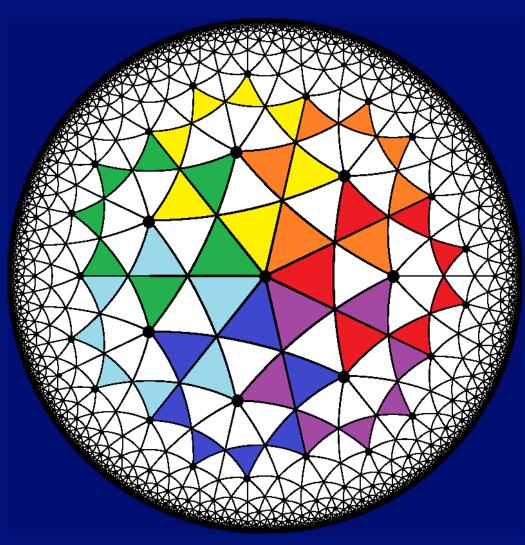
7 per vertex:



 \rightarrow a plane

neg. curved: \rightarrow hyperbolic

Hyperbolic Surface: Poincaré Disk Model



Scaling allows to accommodate infinitely many triangles.

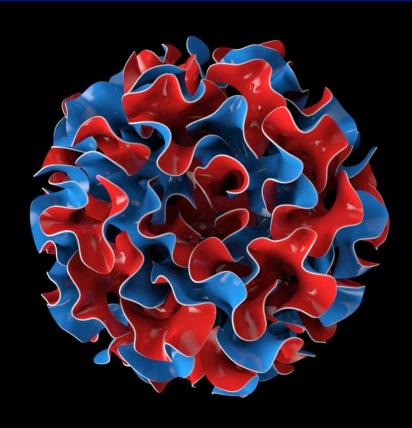
How much of that infinite tiling can we accommodate with equilateral triangles ?



Amy Ione & CW Tyler

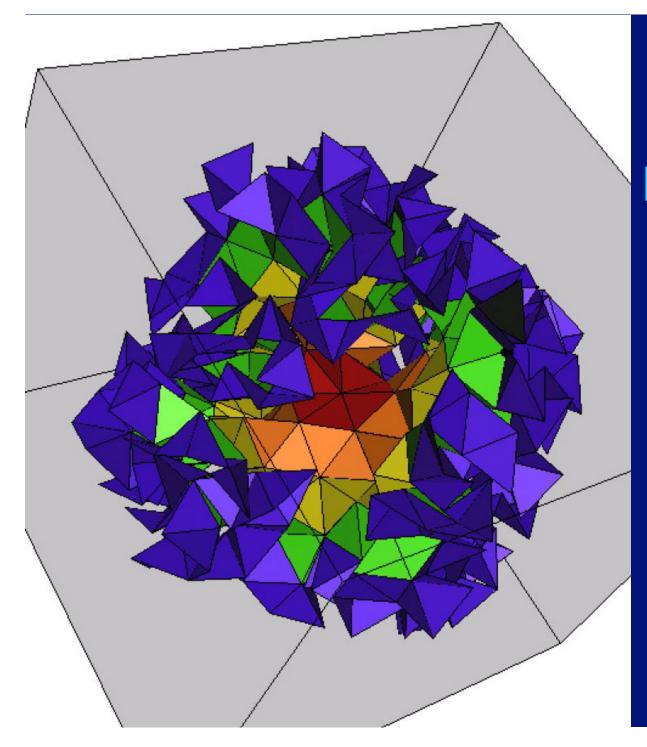
David Richter

Better Luck with Soft Materials



Gabriele Meyer

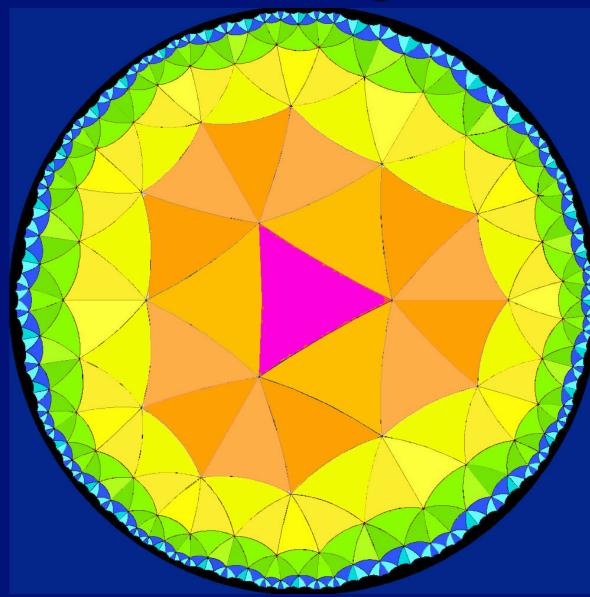
(posted by Loren Serfass)



Computer Model by Mark Howison (2007)

Best result: 810 Triangles (20 hrs CPU time)

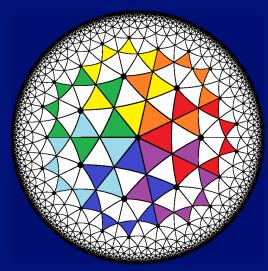
Extending the Disk . . .

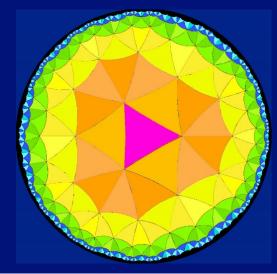


By adding
full annuli –
one at a time,
with ever more triangles ...

Exploit:
6-fold
D3-symmetry

New Approach: Add 6-fold Symmetry



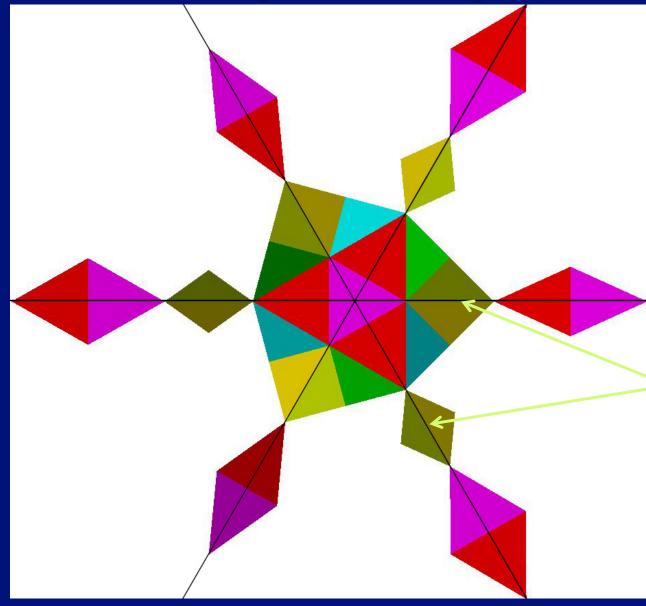


Ring	Faces (old)	Cumul.Faces	Color [1]	Ring	Faces (new)	Cumul.Faces
0	7	7	red	0	1	1
1	28	35	orange	1	15	16
2	77	112	yellow	2 = init.core	45	61
3	219	322	green	3 = swath $#1$	120	181
4	574	896 →810	blue	4 = swath $#2$	315	496
5	1568	2464	purple	5 = swath #3	825	1321
6	4284	6748	white	6	2160	3481 →2197

Howison's annuli: starting with a central vertex.

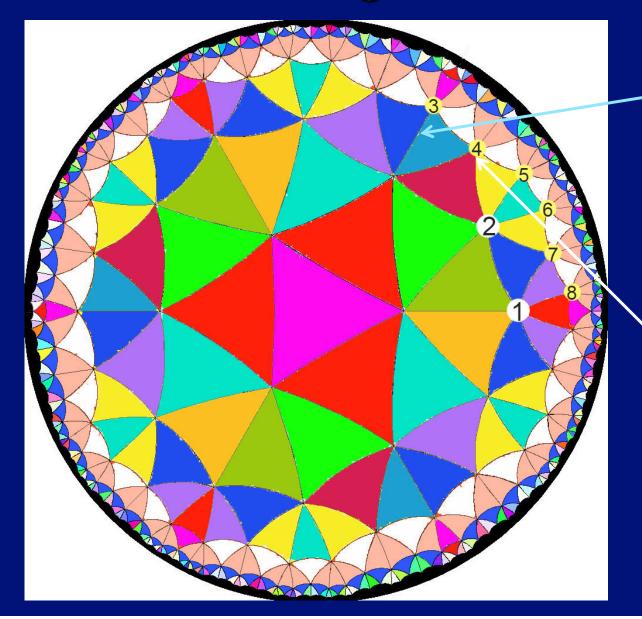
Our new annuli: starting with a central triangle.

Starting with a Symmetrical Core



- D3 symmetry forces some constraints:
- The 4 central triangles are coplanar!
 - Yellow-olive edges lie on symm. axes; adj. triangles are coplanar.

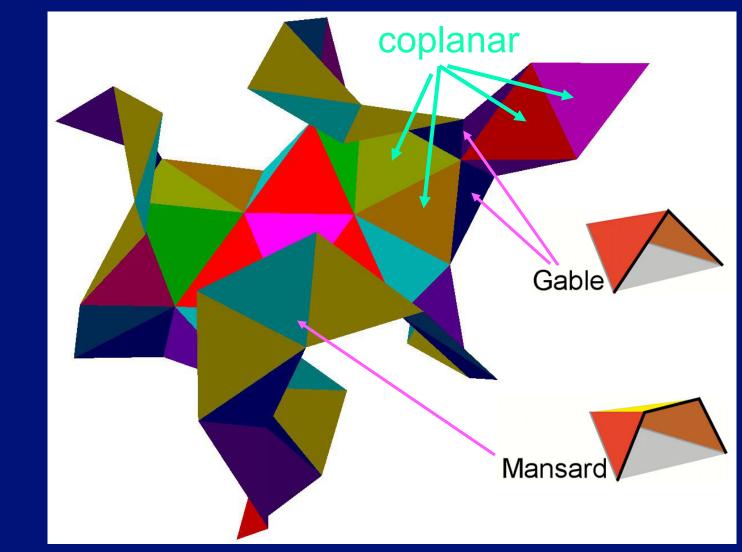
Constructing an Extended Core



Blue-teal edges lie on symm. axes. The two triangles are coplanar!

Give #4 & #2 the same sign for the z-value to make "nice, looping arch"

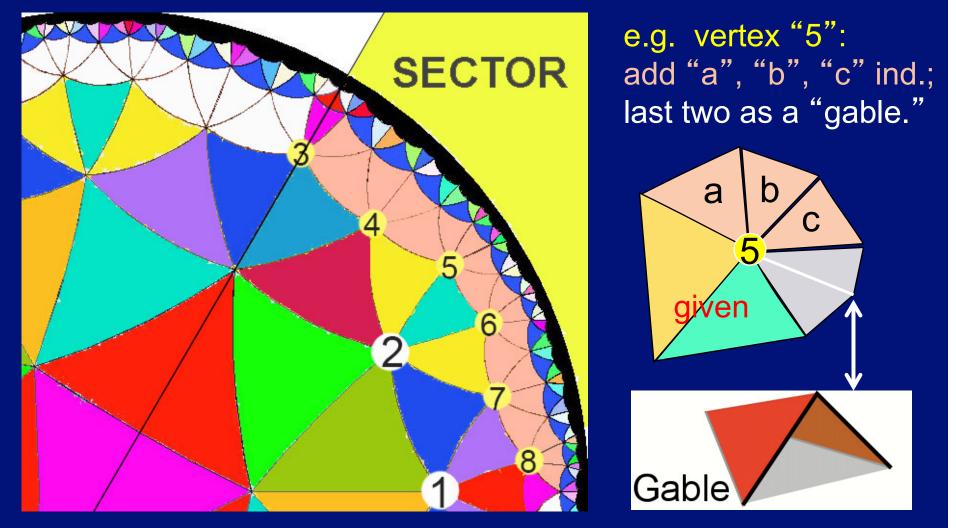
Manually Constructed, Extended Core



 \rightarrow 61 triangles with D3 symmetry with nice undulating border.

Step-by-Step Construction

 Complete one vertex at a time: "3", "4", "5", "6", "7", "8" in orange "swath #1" throughout a 60° sector.



Interference Checking & Back-Tracking

Interference:

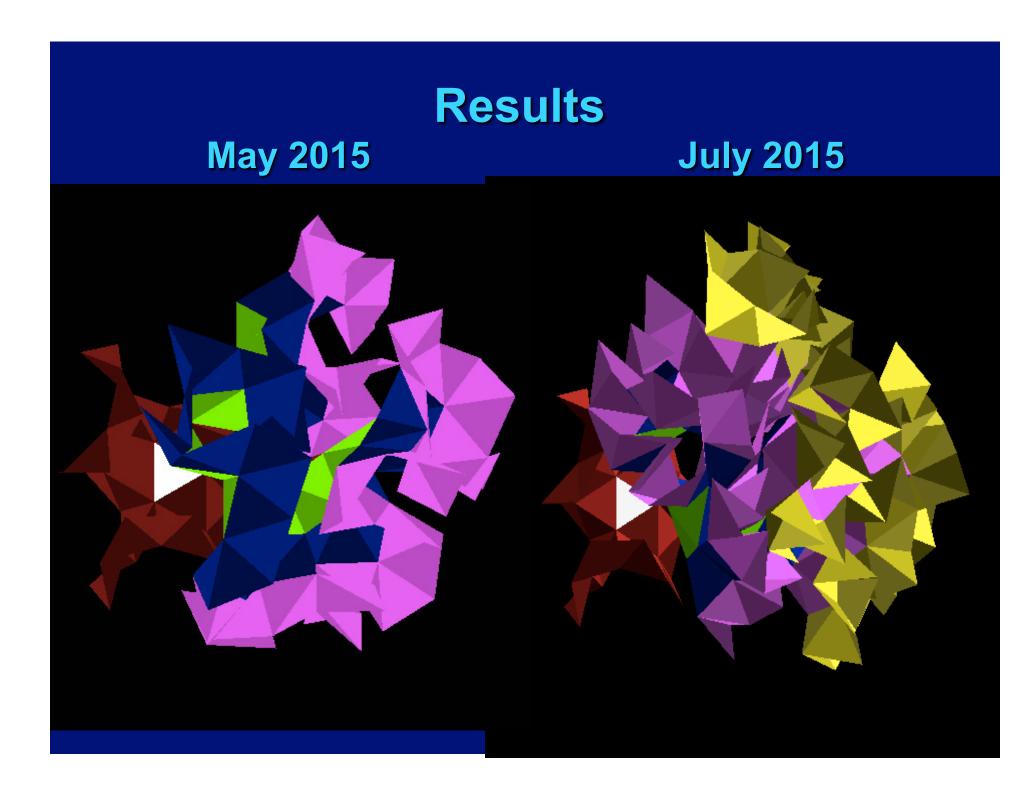
- Check for intersections between triangles;
- Apply conservative proximity check for inner swath;
- Apply the extensive intersection test for outer swaths

Back-track:

 If new triangle fails to meet heuristic guidelines or criteria

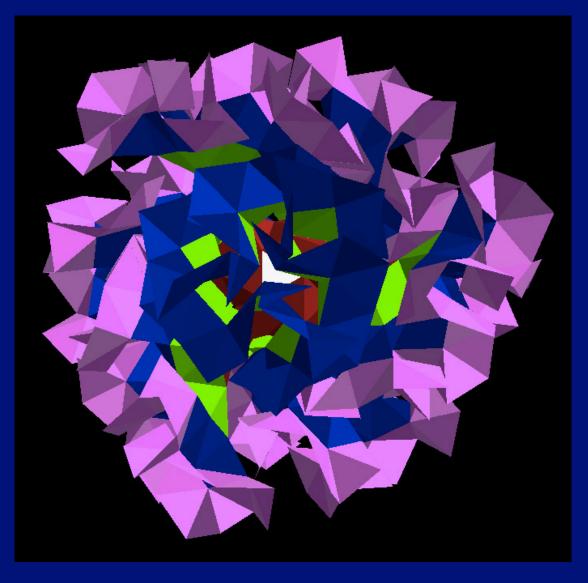
Overall Strategy: 1 Annulus at a Time

- We only have to construct one 60° sector of the whole disk, which then gets replicated 6 times.
- We construct this one "swath" (= 1/6 annulus) at a time; we try to construct a "good" swath, one that leaves most space for subsequent one.
- Such a good swath gets added to the "core"; it now acts as a starting point for the next swath.

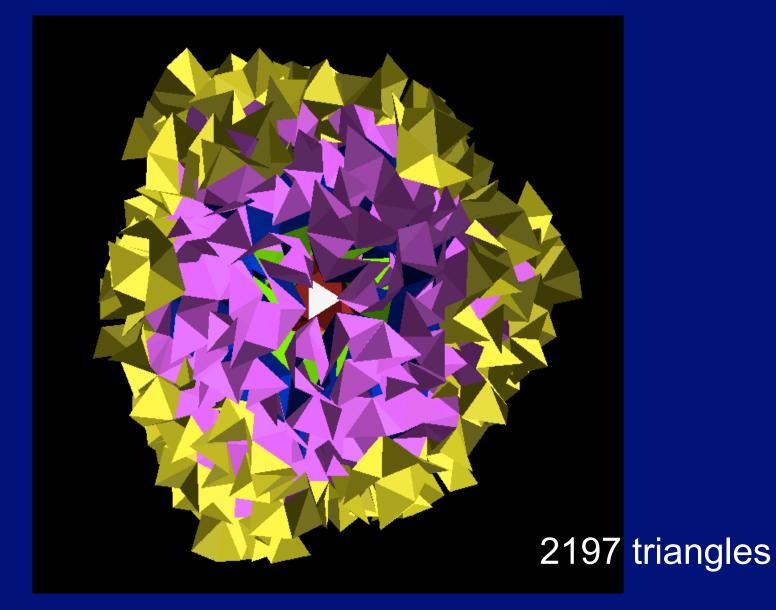


Video

Fully Instantiated Disk (May 2015)



Final Result at Conference Time



Conclusions

- Computers are useful and powerful; but brute-force approaches may only get limited results.
- Use your brain to gain an understanding of the problem, and the tailor your search to make use of such insights.
- A good combination of the two approaches can then result in a more effective search, reducing computation time exponentially.
- This is often true in engineering problems relying on simulated annealing or on genetic algorithms.