
MANIPULATING SPACE AND TIME IN VISUAL MEDIA

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sean J. Liu

August 2023

© 2023 by Sean Jeng Liu. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.
http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: https://purl.stanford.edu/qg406gc5383

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
https://purl.stanford.edu/qg406gc5383

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Maneesh Agrawala, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

James Landay

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Aaron Hertzmann

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

With the increased usage of digital technology, visual media has become a popular form of commu-

nication and is widely used for storytelling and art. Often times, authors of visual media may wish

to make spatial or temporal edits in post-production. However, it can be difficult to author edits

while preserving realism. One main issue is that there are many constraints involved in realism,

which limit the edits that can be achieved given user-specified inputs. Moreover, often times these

constraints are not explicitly defined. In this work, we introduce task-dependent realism, which

explicitly defines realism for a target manipulation task. We focus on two manipulation tasks and

identify spatial and temporal properties to relax to achieve a greater number of realistic-looking

edits. This thesis contributes: 1) spatial and temporal constraints to relax and maintain for two

manipulation tasks, based on perceptual properties; and 2) techniques which automatically maintain

and relax these constraints as the user specifies input constraints and explores edits.

iv

Acknowledgments

I have learned and grown so much throughout my Ph.D. journey. I’m grateful for all the people

who I have encountered along the way. First, I’d like to thank my advisor, Maneesh Agrawala, for

his support throughout the years. I’d also like to thank my research mentors Aaron Hertzmann and

Stephen DiVerdi – I would not be where I am today without their mentorship and guidance. I’d

also like to thank my committee members James Landay, Ron Fedkiw, and Sean Follmer for their

support and feedback. Lastly, I’d like to thank Michael Bernstein for providing me with invaluable

teaching and learning experiences during my final year as a Ph.D. student.

I am fortunate to have an amazing cohort of researchers and friends at Stanford. They made my

grad school life so much more fun and exciting. In no particular order: Kevin Li, Ante Qu, Zhenglin

Geng, Jane E, Ed Quigley, Winnie Lin, Minjae Lee, Mike Bao, Mackenzie Leake, Dan Fu, Jingyi Li,

Mitchell Gordon, Dae Hyun Kim, Jane Wu, Jacob Ritchie, Jeongyeon Kim, Jean-Pëıc Chou, Sharon

Zhang, Terrell Ibanez, Jiaju Ma, and many other wonderful friends I’ve met at Stanford.

I’m also grateful for the wonderful friends I have outside of Stanford. Thank you for reminding

me about life beyond research and for all the adventures: Katie Park, Kristi Park, Shena Fortozo,

Cassie Chin, Stephanie Chin, Shirley Zhou, Justin Ying, Dai Yang, and many others.

Finally, I’d like to thank my family and especially my mother, Ruay Ho, for her emotional

support throughout my Ph.D. and for her wisdom about life.

This marks the end of a chapter as well as the beginning of a new chapter, and I’m glad to say

that my journey has made me more resilient, confident, and brave for the road ahead. To whomever

is reading this: may you always be happy, adventurous, and courageous in all of your journeys.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Tasks Overview . 2

1.1.1 Editing Photographic Composition . 2

1.1.2 Adaptive Playback of 360◦ Video . 3

1.2 Broader Impact . 3

1.3 Statement of Published Papers and Multiple Authorship 4

1.4 Roadmap . 4

2 Related Work 5

2.1 Realism in Computer Graphics . 5

2.2 Exploring Realistic Edits . 6

2.3 Related Work: ZoomShop . 7

2.4 Related Work: Gated Clips . 9

2.4.1 Interactive and looping video . 9

2.4.2 Gaze guidance . 9

2.4.3 View-dependent 360◦◦◦ video and animation . 10

3 ZoomShop 12

3.1 Editing Photographic Composition . 13

3.1.1 Task-Dependent Realism . 13

3.1.2 Overview . 14

3.2 Method . 15

3.2.1 Editing Objects at Different Depths . 15

3.2.2 Editing Objects at the Same Depth . 17

3.3 The ZoomShop Application . 19

vi

3.3.1 Input Geometry . 19

3.3.2 Boundary Curve Representation . 20

3.3.3 User Controls . 20

3.3.4 Translation Map . 21

3.3.5 Image Synthesis . 21

3.3.6 Example Workflow . 21

3.4 Results . 22

3.4.1 Comparisons to Alternatives . 27

3.4.2 User Impressions . 28

3.5 Discussion . 29

3.6 Limitations and Future Work . 31

3.7 Chapter Summary . 32

4 Gated Clips 33

4.1 Introduction . 35

4.1.1 Task-Dependent Realism . 36

4.1.2 Overview . 36

4.2 Types of Gates . 37

4.3 View-Dependent Video Textures . 38

4.4 Generating View-Dependent Textures . 39

4.4.1 Graph Cut Formulation . 41

4.4.2 Postprocessing . 44

4.4.3 Forward Arcs to the Gate . 45

4.4.4 Alternative Q-Learning Approach . 45

4.5 Example Videos . 48

4.6 User Study . 50

4.6.1 Study Results . 51

4.7 Discussion . 52

4.8 Limitations and Future Work . 54

4.9 Chapter Summary . 54

5 Conclusion and Future Work 56

5.1 Identifying Constraints . 57

5.2 Exploration of Edits . 58

5.3 Generating and Editing Synthetic Content . 58

5.4 Visual Perception . 59

5.5 Non-Visual Domains . 59

vii

A ZoomShop 61

A.1 Geometric Description and Derivation of b(z) . 61

A.1.1 Piecewise Linear Camera Model . 61

A.1.2 Curved Paths . 66

A.1.3 Discontinuous Paths . 66

A.2 Removing Artifacts . 67

A.3 Additional Translation Results . 68

B Gated Clips 70

B.1 View-Dependent Arc Cost Computation . 70

B.1.1 View-Dependent Arc Cost Matrix . 70

B.2 Buffer Edge Costs . 71

Bibliography 73

viii

List of Tables

4.1 Summary of example videos. For each video, we added three gated clips. We show

the length (in seconds) and type of each gated clip. L: lookat gate, O: offscreen gate,

*: enabled forward arcs. 49

ix

List of Figures

3.1 Using ZoomShop to edit a photograph [139]. (a) An image of mountains (background)

framed by trees (foreground). The user’s goal is to make the boat bigger while keep-

ing the framing of foreground trees. (b) Zooming in and cropping scales up the boat,

but cuts out most of the trees and shore. (c) Left: With ZoomShop users can select

depth ranges (yellow and green) and independently adjust each region while main-

taining scene structure. Disoccluded and stretched pixels are shown in cyan. Right:

Cyan pixels from image are manually inpainted using Photoshop’s Content-Aware

Fill. We show the top-down view volume and boundary curve of each camera above

the corresponding images in a, b, and c. 12

3.2 Venice [137]. Goal: scale up distant building while keeping the boat in the same place.

(a) Original photo. (b) Zooming in and cropping. (c) Cutting out the building, scaling

it, and pasting it back in may not preserve depth structure due to lack of scene depth

understanding. Here, the building occludes side buildings and boats, and the poles

in front are cut in half (marked with boxes). (d) Our result with inpainting (manual

guidance). 13

3.3 Lighthouse [97]. Goal: enlarge lighthouse while keeping compositional element of the

foreground ridge. (a) Original photo. (b) Zooming in and cropping. (c) Our result.

(d) Our result with inpainting (automatic). 14

3.4 Our non-linear camera model is defined by its boundary curve b(z). 16

3.5 Monument Valley [136]. ZoomShop scales scene points at the same depth by the

same amount. (a) Original photo. (b) Side hills (green) are scaled up but are moved

partially out of view; disoccluded pixels are shown in cyan. To fix this, ZoomShop

includes a depth-aware image warp to translate the side hills back into view. 17

3.6 Example user workflow. Top-down layout of a statue (blue rectangle) flanked by

pillars (blue circles) on a platform (purple region), with steps (light blue) leading up

to it. 19

x

3.7 Eiffel Tower [92]. Goal: enlarge the Eiffel Tower while keeping the Gargoyle visible.

(a) Original photo. (b) Zooming in and cropping. (c) Our result. (d) Our result with

inpainting (top: automatic; bottom: manual guidance). We break the scene up into

three depth ranges; the gargoyle, the intermediate buildings, and the Eiffel Tower.

The intermediate depth range maintains linear perspective for the buildings, and we

place the discontinuity between the far two depth ranges in a highly textured region

for easier inpainting. 22

3.8 Seal Rocks. Goal: enlarge Seal Rocks (background) while keeping Cliff House (fore-

ground, left) in view. (a) Original photo. (b) Zooming in and cropping. (c) Our

result. (d) Our result with inpainting (automatic). 22

3.9 Versailles [96]. Goal: enlarge the Versailles palace while keeping the fountain fixed. a)

Original photo. (b) Zoom in and crop. (c) Our result. (d) Our result with inpainting

(top: automatic; bottom: with manual guidance). We use a linear interpolant and

select depth ranges that border the start and end of the lawn. This hides bending

artifacts where the perspective changes. 23

3.10 The Vessel. Goal: expand depth of the steps leading up to the Vessel. (a) Original

photo. (b) Zooming out and cropping. (c) Our result. (d) Our result with inpainting

(left: automatic; right: with manual guidance). 23

3.11 Biker Bridge. Goal: compress the depth of the bridge to better match our memory.

(a) Original photo. (b) Zooming in and cropping. (c) Our result. (d) Our result with

inpainting (top: automatic; bottom: with manual guidance). 23

3.12 Buddha. Goal: enlarge the Buddha statue while keeping the left tower in view.

Magenta and blue rectangles mark the input to our translation optimization. (a)

Original photo. (b) Scaled up Buddha statue. (c) Our result (top: translation map).

(d) Our result with inpainting (top: automatic; bottom: with manual guidance). . . 24

3.13 Monument Valley [136]. Goal: enlarge the hills, keeping all three fully visible. Ma-

genta and blue rectangles mark the input to our translation optimization (each pair of

rectangles has the same size; magenta overlays blue rectangles). (a) Original photo.

(b) Scaled up hills. (c) Our result (top: translation map). (d) Our result with in-

painting (top: automatic; bottom: with manual guidance). 24

3.14 Lighthouse [97]. Two depth ranges are connected by (a) a curved (cubic Bézier)

segment; (b) a linear segment. A linear segment yields an artifact at the far boundary

of the yellow depth range, where the road bends suddenly (red boxes). A cubic

segment smoothly varies the transition and avoids the artifact. 25

xi

3.15 Versailles [96]. Two depth ranges are connected by (a) a curved (cubic Bézier) seg-

ment; (b) a linear segment. A curved segment does not preserve the straight lines of

the lawn, creating a visible artifact (red circles). A linear segment preserves straight

lines but can introduce a bend artifact. The artifact is hidden here because the

segment boundaries are at the start and end of the lawn. 25

3.16 Tourism [67, 64]. (a) Goal: enlarge Big Buddha. (b) Goal: enlarge the Eiffel Tower.

Left column: original photos. Right column: output images inpainted with manual

guidance. 26

3.17 Biker bridge. Comparison with naively scaling depths independently. (a) Original

photo. (b) Naively scaling the church breaks depth continuity and causes the church

to become detached from the ground. (c) Users must take care to vertically shift

the scaled region to reconnect to the ground. As shown in the horizontal (purple)

and vertical (blue) scale maps, this naive approach only uniformly scales pixels of the

church. (d) ZoomShop’s camera model automatically accounts for depth continuity

and prevents the church from detaching from the ground. As shown in the scale maps,

ZoomShop scales the pixels of the ground in front of the church as well, to provide a

smooth transition of scale across depth. 27

3.18 Eiffel Tower [92]. This result from Niklaus et al. [103] moves a virtual camera through

the 3D scene creating a short animation. (a) The start of the animation. (b) The end

of the animation. Because the camera uses linear perspective, it cannot enlarge the

Eiffel Tower while keeping the gargoyle in view. Moving the camera forward makes

the tower bigger but cuts out the gargoyle. 28

3.19 Seal Rocks. Comparison with Computational Zoom [14]. (a) ZoomShop’s camera

model supports non-monotonic boundary curves with negative slope segments, such

as on the water between the yellow and green regions, which allows greater changes in

scale. (b) Computational Zoom does not support negative slopes, limiting how large

we can scale up Seal Rocks while keeping the Cliff House in place. 29

xii

3.20 Correction of Depth Estimation Errors (left: before correction. right: after correc-

tion). (a) Blurry edges in Eiffel Tower [92]. Before correction, inaccurate depth

estimation along the gargoyle’s borders leads to depth bleeding in the 3D scene (top,

left) and causes its borders to change after scaling (bottom, left). After correcting

the depth inside the gargoyle, the gargoyle’s outline is preserved (bottom, right).

(b) Incorrect depth within scene elements in Versailles [96]. Before correction, the

tourists received the same depth as the receding ground and became significantly dis-

torted after scaling (bottom, left). After correction, the tourists remain vertical on

the ground (bottom, right). (c) Missed fine features in Mountain Lake Trees [139].

The sky region between the leaves received the same depth as the leaves (top, left);

after scaling, the sky incorrectly occludes the mountains (bottom, left). Fixing the

depth of the sky between the leaves preserves depth order after scaling (bottom, right). 30

3.21 Inpainting: automatic (left) vs. manually guided (right). (a) Venice [137]. Automatic

inpainting pasted some water texture where the sky should be. (b) Biker bridge.

Automatic inpainting caused objects to “bleed” pixels beyond their boundaries. In

both of these examples, we fixed these issues by manually specifying regions for CAF

to sample from (e.g., sky). 31

4.1 In 360◦ video, viewers can look anywhere at any time. In the opening scene of

Invasion!, a rabbit emerges from a cave (a). In sequential playback, a viewer looking

at the cave (green box) will see the rabbit emerge, whereas a viewer not looking at

the cave (red box) will miss this event. We provide tools to guarantee that viewers

see the region of interest (ROI) at the correct timecode to witness the event (b).

We introduce the concept of gated clips, where playback only continues if the viewer

satisfies a condition related to the ROI (green boxes). Otherwise, our player loops

the video using view-dependent video textures (red boxes). 33

xiii

4.2 Our prototype desktop video editing interface with a gated clip. The upper left pane

shows a preview of the headset FOV, which is output live to the Oculus Rift. The

upper right pane shows the full equirectangular view and marks the current headset

FOV (pink border). The video timeline on the bottom acts as a conventional video

editor, with each dark blue rectangle representing a clip. The first clip is a gated clip

(white border). Filmmakers specify a gate timecode (red vertical line on timeline), a

ROI (green box) on the equirectangular frame, as well as other parameters shown in

the settings box below the clip. View-dependent arcs are shown as backward arcs (red

arrows) on top of the gated clip. In this example, the ROI is the aliens, and the gate

condition is a lookat gate, i.e., playback may not advance past the gate timecode unless

the viewer is looking at the ROI. To avoid static loops and reduce arcs with visual

artifacts, the filmmaker can set thresholds on the length of arcs and on the perceptual

difference of arc transitions. After setting all thresholds, the filmmaker can generate

the view-dependent arcs by loading in (pre-processed) arc costs and applying the

gate. To have viewers jump to the gate timecode as soon as they see the ROI, the

filmmaker can also enable forward arcs that are under a perceptual threshold. Finally,

the filmmaker can choose to cross-fade the audio during loop transitions or choose to

mute the audio entirely. 34

4.3 Discretized view directions. This figure visualizes the FOVs of |V| = 6 discretized

view directions evenly spaced around the equator on an equirectangular frame from

an example video. In our implementation, we used |V| = 40. The horizontal FOV of

each discretized view matches the horizontal FOV of the Oculus Rift and covers the

full vertical range of the video. 38

4.4 Visualization of view-dependent video textures for a gated clip. Each row corresponds

to one of the discretized viewing directions (here we show the first five views only).

The gate timecode is t = T , and v = 2 is the only view that satisfies the gate

condition (green vertical line); other views do not (red vertical lines). Red arrows

show the computed backward arcs. Tick marks correspond to frames, and purple

ones are frames from which there are seamless backward arcs, i.e. arcs in which the

transition frames have low perceptual difference. 39

xiv

4.5 One naive solution is to find one loop (i.e., one backward transition arc) for each

view that does not satisfy the gate condition. In this example, the gate timecode

is t = T , and the view v = 2 satisfies the gate condition. All other views include

one backward arc forming a loop. The thick black line shows an example viewer’s

head trajectory through the views over time (slowly turning their head from v = 4 to

v = 0). Unfortunately the viewer can still get past the gate time through another view

v ̸= 2 via certain head motions, so the naive solution does not provide a guarantee

that the gate condition is met before playback progresses. 40

4.6 Another naive solution is to find one loop (i.e. one backward transition arc) for each

view that does not satisfy the gate condition, such that all the arcs originate at the

same timecode. In this example, the gate timecode is t = T , and the view v = 2

satisfies the gate condition. Unfortunately, if the originating timecode for all arcs

does not equal the gate timecode T , then the viewer can still get past the gate time

through a view v ̸= 2, as shown by the thick black line, which gives an example of

viewer’s head trajectory (slowly turning their head from v = 4 to v = 0) that gets

past the gate without satisfying the gate condition. 41

4.7 (a) A single forward edge between consecutive nodes (v, t) → (v, t + 1) represents

normal video playback of sequential frames but does not model head rotation. (b)

Adding forward edges to adjacent viewing directions models head rotation below some

velocity—i.e. (v, t) → (v′, t+1), for all v′ ∈ N(v). But cutting these edges corresponds
to disallowing some head motions, which we cannot control. (c) A buffer node (v, t)B

(cyan) creates one edge (black) that can be cut (to remove the video frame advance

for this view), while infinite-weight edges (cyan) cannot be cut (to properly model

free user head rotation). The edge weight w is designed to strongly prefer arcs with

perceptual error below the user-set threshold. More details of how w is determined is

in the Appendix. 42

4.8 Our graph representation of a gated clip. The gate frame is t = T and the views

that satisfy the gate condition are H = {1, 2}. We add buffer nodes (cyan) between

consecutive frame nodes. There are infinite-weighted edges from each buffer node to

possible views that viewers might see at the next frame. In this figure, n = 1 for

the number of adjacent views that viewers can visit in one frame, but in our result

videos we used n = 2. Buffer edges connect each frame node to its buffer node. Buffer

edges of {(v, t)|v ∈ H, t < T} have infinite weight, while buffer edges of gate notes

{(v, T)|v ∈ H} have a weight of 0. Source node s is connected to the starting frame

nodes t = 0 in each view, while terminal node t is connected to all nodes at t = T +1.

After performing graph cut, the initial nodes and gate nodes (green) are partitioned

from end nodes (red). 43

xv

4.9 The graph cut algorithm may inadvertently create backward arcs (red arrows) into

the “unsafe zone” when there are discontiguous cuts along a viewing direction. Our

post-processing step replaces those backward arcs with new backward arcs (green

arrows) that terminate in the “safe zone.” The safe zone includes the both gray and

purple shaded regions. However, since the purple frames border the unsafe zone, it is

possible for viewers to turn their head into the unsafe zone as the player transitions

into a purple frame, so our heuristic looks for replacement arcs that end in the gray

shaded area. 44

4.10 Our graph representation of a gated clip. The gate frame is t = T and the views that

satisfy the gate condition are H = {1, 2}. In this figure, n = 1 for the number of

adjacent views that viewers can visit in one frame, but in our result videos we used

n = 2. At any given node, our tool takes an action to either go to a previous frame

or to continue playing forward. In this figure, the pink node is the current node, and

each pink arc represents an action our tool can take from the pink node. Due to

head motion, the viewer might actually end up ±n views within the destination view

(highlighted in cyan). 46

4.11 Stills from our example videos. The first four were professionally-created videos, not

intended for use with gated clips. The fifth we shot for this project. 48

4.12 User study scores comparing Standard and Gated clips in three categories: (1) how

easy it was to follow the story, (2) how stressful it was to follow the story (7 for

least stressful), and (3) how interested they were in the stories. Confidence intervals

are computed as 2×Standard Error. We found significant differences between the

scores for “how easy” and “how stressfull”, as indicated by the *’s, but not for “how

interested”. 51

A.1 Camera Models . 62

A.2 Piecewise Linear: Pseudo-code for projecting a point (x, z) iteratively onto the image

plane P0. 65

A.3 Illustration of discontinuous piecewise-linear camera paths. We break off each half-

width depth plane Pi into two parts, P−
i and P+

i . In this example, a discontinuity

occurs at zi because P−
i ̸= P+

i . b(z) is continuous at zi−1 because P−
i−1 = P+

i−1. . . 67

A.4 Birds. Goal: Scale up birds while also keeping the left side rock visible. Magenta and

blue rectangles are source-destination pairs which are input to our translation opti-

mization. Each pair of rectangles has the same size; magenta overlays blue rectangles.

(a) Original photo. (b) Scaled up birds. (c) ZoomShop output (top: translation map).

(d) ZoomShop with inpainting (automatic). 69

xvi

A.5 Yosemite [141]. Goal: Compress depth in valley while keeping two side rocks in view.

Magenta and blue rectangles are source-destination pairs which are input to our trans-

lation optimization. (a) Original photo. (b) Compressed valley. (c) ZoomShop out-

put (top: translation map). (d) ZoomShop with inpainting (top: automatic, bottom:

manual guidance) . 69

xvii

Chapter 1

Introduction

With the rise of digital technology, visual media has become an important and popular form of

communication and is widely used for storytelling and art. Capturing and displaying visual media

has become more accessible than ever before. Often times, authors may wish to edit captured media

in post-production to achieve various artistic or storytelling goals. This is evident by the wide range

of editing tools available today, such as Adobe Photoshop [2] and Adobe Premiere Pro [3].

One common objective when editing visual media is to preserve realism. For instance, when

photoshopping a person into an photo, the author may want the resulting composite image to look

“realistic.” But what is realism? Despite the long history of computer graphics in pursuing realism,

there is no consensus on an explicit definition. Rather, often times, we resort to an implicit, negative

definition of realism: a lack of distortions or clues that the media was not captured “as is.” However,

this implicit, negative definition of realism places the burden of maintaining realism onto the user.

As users explores edits, in addition to specifying input parameters for the editing task, they also have

to check if those parameters have produced a realistic-looking output. As a result, users often resort

to a trial-and-error approach for maintaining realism while also trying to achieve their authoring

goals, which adds friction to the authoring process.

To alleviate this burden from users, one approach is to encode realism as explicit constraints

in the editing tool and automatically enforce them as the user explores edits. However, in general,

this is challenging to do because there are many constraints involved in realism, and it is non-trivial

to define them all explicitly. Even if one were able to list all of them out, the large number of

constraints of realism would significantly limit the edits that can be achieved given user-specified

inputs.

Rather than aiming for a general definition of realism, if we focus on a specific task, we can

more easily identify a set of explicit constraints to relax and maintain for that task. By identifying

explicit constraints to relax, we can increase the space of realistic-looking outputs which the user can

explore. By identifying explicit constraints to maintain, we can design algorithms to automatically

1

CHAPTER 1. INTRODUCTION 2

preserve realism as the user explores edits.

This thesis introduces task-dependent realism, which explicitly defines realism for a target ma-

nipulation task. More specifically, task-dependent realism consists of:

• a set of explicit constraints to relax, R;

• a set of explicit constraints to maintain, M ;

• a set of user-specified input parameters, I

for a target manipulation task, such that, when R and M are applied, manipulating I would generate

realistic-looking outputs. For the given task and I, R represents properties that, when relaxed, would

still produce realistic-looking results, and M represents important perceptual properties to maintain.

This work focuses on two target manipulation tasks of visual media – one that manipulates space,

and one that manipulates time – and for each task identifies properties to relax and maintain. This

thesis contributes: 1) task-dependent realism constraints for two target manipulation tasks, and 2)

techniques that apply these task-dependent realism constraints as the user specifies input constraints

and explores edits.

1.1 Tasks Overview

The two manipulation tasks in this thesis involve spatial and temporal editing in visual media

while preserving realism. The first task manipulates space in photographs by changing object size,

foreshortening, and position. The second task manipulates time in 360◦ video by seamlessly adjusting

video time based on the viewer’s head motion to achieve storytelling goals. Here, we give a brief

overview of the tasks and associated challenges.

1.1.1 Editing Photographic Composition

The first task is to adjust relative object sizes and positions in photographs. Many of us can probably

relate to this problem: when taking a photo of a distant object, such as the moon in the sky, the

object appears smaller in the photograph than it does in real life. While a näıve solution is to

zoom in and crop, this approach inevitably cuts out scene elements in the periphery, which may be

undesirable. In this task, our goal is to adjust object sizes and positions while preserving realism

and maintaining the visibility of user-selected scene elements.

To achieve this, we identify a set of task-dependent realism constraints and design a new image

manipulation tool, ZoomShop, to apply these constraints as the user makes edits. For this task, we

show that the important properties to maintain (M) are depth structures (including depth continuity

and ordering). The constraints which we can relax (R) are light ray properties; specifically, we show

that even if light rays are not straight, we can still produce realistic-looking results for this task. By

CHAPTER 1. INTRODUCTION 3

relaxing these constraints, we are able to achieve changes at larger scales than was possible before.

The input parameters (I) for this task are the selected pixels and amount of change (e.g., scale or

offset), both of which are designated by the user.

By applying the identified task-dependent realism constraints, ZoomShop increases the space of

candidate outputs and generates realistic-looking results as the user makes edits. We discuss these

constraints and techniques in Chapter 3.

1.1.2 Adaptive Playback of 360◦ Video

The second task is to adapt the playback time of 360◦ videos based on where the viewer looks in

order to achieve storytelling goals. In 360◦ video, viewers can look anywhere in the 360◦ scene at

any time. However, this freedom also poses storytelling challenges for filmmakers. In particular,

viewers of 360◦ video may miss important story events if they were looking in the wrong direction.

We introduce gated clips to help filmmakers achieve storytelling goals by guaranteeing that viewers

see important story events in 360◦ video. Gated clips only play past a certain timestamp (gate time)

if the viewer satisfies a viewing condition (gate condition). If the viewer is looking in the wrong

direction, gated clips wait for the viewer by adaptively extending the length of the video until the

viewer looks in the right direction.

In this task, our goal is to generate gated clips by finding seamless transitions in the 360◦ video

to jump back in time. During playback, if the viewing condition is not met, gated clips play the

selected transitions to jump back in time and extend the playback length of the video until the

viewing condition is met (e.g., viewer looks in the right direction). For this task, we identify a set

of task-dependent realism constraints and design techniques to apply these constraints as the user

specifies gate parameters. In particular, we show that the important properties to maintain (M)

are within-view spatiotemporal coherency, i.e., the visual content within the viewer’s field of view

looks coherent in space and time. The properties which we can relax (R) are linear time and out-

of-view spatiotemporal coherency. In other words, the visual content outside of the viewer’s field

of view does not need to be coherent, and the timeline of the gated clip does not need to adhere

the originally captured linear timeline. The user-specified input parameters (I) are the gate time, a

region of interest (ROI), and a condition.

By applying the identified task-dependent realism constraints, gated clips increase the space of

candidate outputs and generates realistic-looking results as the user explores edits. We discuss these

constraints and techniques in Chapter 4.

1.2 Broader Impact

While this thesis focuses on two manipulation tasks and the methods of applying task-dependent

realism for these specific tasks, it showcases the advantage of task-dependent realism at a broader

CHAPTER 1. INTRODUCTION 4

level. By explicitly identifying and applying constraints to relax and maintain for a given task,

we can design editing tools to increase the space of realistic-looking solutions and automatically

generate realistic results as the user explores edits. We speculate that task-dependent realism offers

a new way of editing visual media – by decoupling the properties of realism from user-specified input

parameters, task-dependent realism alleviates the burden of maintaining realism from the user and

allows them to focus on authoring goals when exploring edits.

1.3 Statement of Published Papers and Multiple Authorship

This thesis is based on the publications: ZoomShop: Depth-Aware Editing of Photographic Com-

position [88] and View-Dependent Video Textures for 360◦ Video [87]. I am the lead author on

these publications, but this research could not have been completed without my advisor, Maneesh

Agrawala, and research mentors, Stephen DiVerdi and Aaron Hertzmann.

1.4 Roadmap

I will begin with a background overview of realism in computer graphics, visual media editing, as well

as other related work (Chapter 2). Then, I will dive into the details of the two projects: ZoomShop

(Chapter 3) and Gated Clips (Chapter 4) and conclude with some directions of future work (Chapter

5).

Chapter 2

Related Work

In this chapter, I will first discuss broader work related to task-dependent realism and then discuss

work specifically related to the two manipulation tasks explored in this thesis.

2.1 Realism in Computer Graphics

Realism has long been pursued throughout the history of computer graphics. While there is no

consensus on a general definition of realism, there have been several proposals [45, 22, 77]. These

proposals generally fall under two categories which aim to model different aspects of reality: 1) the

physical properties of the real world (e.g., does an image accurately follow light paths), and 2) the

perceptual properties (e.g., does an image evoke the same visual response from viewers as the real

scene). Ferwerda et al. [45] called the former physical realism and the latter photo-realism. Each

view of realism sets different goals and gave rise to different groups of computer graphics techniques

which optimize for these goals.

Examples of techniques that follow the first definition of realism and model the world based on

physical properties include physics-based simulation [21]. Many works in this domain have looked

into the simulation of various phenomenon, such as fire [101], water [73, 42], smoke [43], and trees

[111]. The underlying assumption is that the physical properties of real world are the important

properties of realism: by accurately modeling the physical properties, we get closer to visually

replicating reality. However, the accuracy of physics-based modeling may not directly correlate with

perceived realism. One example of this phenomenon is the uncanny valley, where a more physically

accurate modeling of the human face leads to eerier effects [123, 62].

Another group of techniques optimizes for the perceptual properties of the real world [115, 32].

Many perception-based methods aim to quantify the attributes of an image that make it look

perceptually real [112, 89, 161] and use it for improving realism [150]. Human visual perception filters

the information it receives and creates some flexibility for rendering synthetic imagery [115]. Many

5

CHAPTER 2. RELATED WORK 6

computer graphics techniques have built upon this insight, such as selective rendering [10, 37, 138],

attention redirection [132], and efficient image and video processing [149]. All these methods leverage

features of human visual perception to achieve realism.

Other techniques optimize for both physical and perceptual properties of the real world. Data-

driven methods, for example, measure realism based on how closely an image matches the dis-

tribution of existing data, which may capture both physical and perceptual properties. Today,

many machine learning techniques are able to learn general distributions from existing data [41]

and use them to generate photorealistic results [53]. While powerful, these techniques learn an im-

plicit, black-box representation of realism (e.g., via discriminators) rather than explicit constraints

of realism.

In this thesis, we define and explore task-dependent realism, which identifies properties and

constraints to optimize for a specific manipulation task, rather than adhering to a general definition of

realism. The identified constraints of task-dependent realism are based on the perceptual properties

of realism. Unlike many other perception-based methods, however, our work focuses on specific

tasks and on identifying and applying realism constraints for those tasks, rather than quantifying

visual perception or coming up with general heuristics that exploit visual perception. The task-

specific nature allows us to aggressively relax physical properties for a specific task that would still

produce realistic outputs. While the set of relaxed properties for one task may not generalize to

other tasks, it significantly broadens the range of realistic edits the user may produce and enables

powerful editing techniques. In addition, task-dependent realism defines realism in terms of explicit

constraints of the task rather than general black-box, implicit representations such as those from

data-driven methods.

2.2 Exploring Realistic Edits

Many works have proposed editing techniques for visual media while preserving realism. One large

body of work is machine learning models for image editing. Many of these models are powerful at

generating realistic-looking images [53] by learning an implicit manifold of real images, but they offer

varying levels of user control. Earlier models have less fine-grained controls and appealed to more

automatic ways of image editing, such as domain translation [68, 163, 164, 36], image composites

[51], and other enhancements [116]. Many techniques train specific models and components for a

given task, such as image blending and texture transfer [105, 148, 159]. Nowadays, there is a lot

of research that provide more control over the model outputs, such as through latent vector editing

[162, 60, 109, 140, 11], direct parameter editing [35] and semantic map labels [145]. More fine-

grained controls include sketch-based [65, 94], text-based [165, 50, 98], exemplar-based [151], and

video-driven [74] approaches.

While these machine learning models are powerful, they learn an implicit, general distribution

CHAPTER 2. RELATED WORK 7

of realistic-looking images rather than explicit constraints of realism for those tasks. Since they

learn statistical distributions, the outcomes are not guaranteed to be realistic. When the generated

outputs fall short of realism, it is challenging to understand why and make necessary adjustments

due to the statistical, implicit definition of realism. On the other hand, our approach explicitly

defines realism constraints for a specific task, including constraints to relax in order to increase the

space of realistic edits the user may explore.

Another group of techniques uses an optimization-based approach for visual media editing

[7, 13, 31, 30]. These optimizations typically implicitly encode a definition of realism through their

constraints or objectives. For example, seam carving [13] offers a framework for removing or adding

seams in an image based on user-defined operators, such as low changes in gradient. Similarly,

digital photomontage [7] combines a stack of images based on user-defined objectives, such as color

similarity. In these cases, realism is defined implicitly via low-level heuristics (i.e., high-frequency

spatial regions and color consistency) selected by the user. Although the frameworks can generalize

to several types of images and tasks, they also place the burden of maintaining realism on users.

Other methods focus on more specific tasks and build in more constraints for maintaining realism.

For example, some image warping methods [31, 30] include smoothness and conformality constraints

in their optimizations. Our work is similar in that we focus on specific tasks and identify explicit

constraints to encode in optimizations. However, in addition to identifying constraints for maintain-

ing realism, the work in this thesis places additional emphasis on identifying constraints to relax in

order to increase the range of feasible edits for that task.

2.3 Related Work: ZoomShop

In the first project of this thesis, we introduce an image manipulation tool, ZoomShop, for adjusting

relative object sizes and positions. ZoomShop uses knowledge of the image’s 3D geometry to provide

the specific controls needed to edit photographic composition while maintaining important image

structures. Here, we discuss related work in image retargeting and editing.

Many image retargeting techniques do not consider depth. Cropping [134] can make an object

appear larger in the image but cuts out peripheral content. Seam carving [12, 13] removes pixels as

well but focuses on non-salient ones along an image dimension. Shift maps [110], cut-and-paste [122],

and patch-based image editing methods [129, 20, 124] support arbitrary reshuffling and allow new

pixels to overlay existing pixels. While these image retargeting methods are powerful, they lack scene

depth understanding and thus may not preserve occlusion relationships, depth structure, or provide

direct control over adjusting perspective. One contribution of ZoomShop is to use depth information

for warping, as depth information is becoming more readily available, either from consumer mobile

phone cameras or estimated via state-of-the-art computer vision methods.

Several previous methods specifically aim to adjust scene perspective. Carroll et al. [31, 30]

CHAPTER 2. RELATED WORK 8

introduced warping-based methods for manipulating the local perspective in an image, creating

non-linear warps of a fixed camera projection. Fried et al. [49] show how to modify foreshortening

in portraits by fitting a virtual perspective camera and then warping the image. Other transfor-

mation techniques [166, 128, 31] minimize distortions in wide-angle images by combining different

perspectives in different regions of the image. Other works aim to create realistic-looking panoramas

through perspective deformation [6, 156, 125]. These methods are all constrained to produce one-to-

one mappings between the input and output images, which means they do not support changes in

occlusion relationships between objects. This fundamentally limits their ability to deform scenes in-

volving both foreground and background elements, a common aspect of photographs that ZoomShop

addresses.

Our method is also related to work that reprojects a single image using depth estimation and

conventional projection models [127, 76]. Niklaus et al. [103] recreate “Ken Burns” effects by trans-

lating a linear perspective camera through a photograph’s 3D scene. These methods all utilize

conventional linear perspective camera models, which limits their results to only geometrically accu-

rate reprojections. ZoomShop on the other hand uses a non-linear camera model and warp, enabling

a wider class of image transforms that better supports photographers compositional goals, such as

enlarging a distant object while keeping foreground elements fixed.

Most closely related to ZoomShop is the work of Badki et al. [14], which combines multiple

photographs to reproject the scene with a piecewise linear camera. We extend their camera model

by including linear, curved, and discontinuous segments in our camera model, which support different

types of edits and scenes. ZoomShop also uses a simpler workflow, relying on a single image with a

measured or estimated depth map, which enables editing a broader range of images, such as dynamic

scenes or historical events.

Other techniques have been proposed for combining perspectives from multiple cameras to create

a single non-linear artistic projection [9, 48, 130, 39, 155, 38, 153], or by non-linear ray tracing

[25, 24, 90, 154]. General purpose non-linear camera models are very powerful and can produce a

wide range of image appearances. Our camera model is a subset of these general models, specifically

designed for ease of editing and maintaining scene spatial relationships. We also use a depth-aware

rubber sheet warp to support scene element translation. Our results could be created by a more

general non-linear camera model alone; our contribution is the alignment between ZoomShop’s user

controls and its underlying implementation.

Finally, our work is motivated in part by an intriguing observation from the perception literature:

in some cases linear perspective photographs may not capture subjective visual experience as well

as nonlinear images, particularly those that inflate the size of objects in or near the fovea [18, 27,

114, 75]. Allowing users to resize objects in images could be useful for better conveying scenes and

describing visual experiences [93].

CHAPTER 2. RELATED WORK 9

2.4 Related Work: Gated Clips

In the second project of this thesis, we discuss a new filmmaking technique, gated clips, designed

to ensure that a viewer sees key elements of the narrative in a 360◦ video. Using this technique,

the filmmaker can author a gate which ensures that playback may only proceed past the gate if a

viewing condition is met. To enforce gates, our technique seamlessly loops 360◦ video playback until

the gate condition is met. Here, we discuss three main areas of related work.

2.4.1 Interactive and looping video

Forms of interactive (or dynamic) video, where the video playback changes depending on viewer

actions, have been explored for several decades. The first methods, including Movie-maps [84] and

QuickTimeVR [33], allowed navigation in real and virtual environments, whereas some arcade video

games, such as Space Ace [5] and Dragon’s Lair [4], used interactive video for branching narratives.

Our method uses video textures to create video that loops seamlessly until certain conditions

are met. Video textures were introduced by Schödl et al. [120], who demonstrated finding seamless

non-repeating paths through short clips to create the experience of endlessly playing videos, as well

as to drive video in different ways. This technique has been extended to loop video panoramas

captured by a panning camera [8], motion capture videos of humans [46], videos orbiting around a

moving object [78], and responsively looping video based on user interactions [66].

In order to increase the number of possibilities for seamless transition in a video texture, some

methods have segmented the video into independently-moving regions [120, 59], and then created

separate video textures for each such region. In contrast, we introduce view-dependent arcs, specif-

ically for applying video textures to 360◦ video. Our approach is complementary to segmentation;

our method produces video textures by exploiting viewers’ limited FOV in 360◦ video, whereas

segmentation loops the entire scene by looping and compositing different moving parts of the scene.

Motion segmentation methods are also used in the construction of cinemagraphs [15, 16, 71,

81, 80], photograph-like images with some moving elements. These methods create pixelwise tex-

tures that are not appropriate for our structured scenes. Our view-dependent arcs are also akin to

Chenney and Forsyth’s [34] view-dependent approach to accelerating physical simulation, by eliding

computation for scene elements not in view.

2.4.2 Gaze guidance

While 360◦ video provides a new dimension of viewer interactivity and agency, this freedom is

accompanied by users struggling with not knowing where to look [142, 107]. Methods for guiding

or forcing the viewer to look at a particular region of interest (ROI) are called gaze guidance. Our

approach is complementary to gaze guidance, and we expect our method to be used together with

CHAPTER 2. RELATED WORK 10

gaze guidance techniques, such as audio cues to attract the viewer’s attention. For a survey and

taxonomy of gaze guidance techniques, see Nielsen et al. [102].

Subtle gaze guidance techniques provide visual and audio cues that attempt to guide the viewer’s

gaze without breaking immersion. This is particularly important for narrative content where a film-

maker wishes to keep the viewer fully absorbed by the story. Conventional filmmakers aggressively

use subtle cues to guide the viewer’s attention, and these effects are also being explored by 360◦

filmmakers and researchers [118, 126]. Several techniques apply subtle gaze guidance to normal field

of view (FOV) video, i.e., on a desktop computer monitor. These methods include gradually blurring

non-ROI parts of the image [58], applying shallow depth of field [133], modulating the scene’s visual

saliency [143], and presenting a small flickering distractor in the viewer’s peripheral vision in the

direction of the ROI [17]. For in-headset VR, subtle techniques in the literature include inducing

optical flow in peripheral vision [26] and flickering elements in peripheral vision [55]. Grogorick et

al. [56] perform an evaluation comparing different subtle guidance techniques. Each of these tech-

niques finds some success in guiding viewer gaze, but none guarantee that viewers will see critical

moments.

Several methods actively control the viewer’s gaze direction to focus on a ROI; depending on how

this is implemented, it can substantially break immersion. This includes directly rotating the scene

[82] or rotating the user in a motorized swivel chair [57]. Attempts to hide this rotation include

applying very slow rotations [131], or applying gains to the user’s own rotation [158]. Reorienting the

scene during cuts [108] maintains immersion but can only be applied at cuts. A picture-in-picture

visualization may also be shown of the ROI so that viewers always see important content [83].

2.4.3 View-dependent 360◦◦◦ video and animation

Our work is inspired by several short 360◦ video and animations that use different kinds of view-

dependent playback. Several animated shorts use forms of gating to pause the action (without

pausing the motion or audio), either waiting for the viewer to look at something, or to look away

from something, including “Buggy Night,” “Piggy,” and “The Simpsons: Planet of the Couches,”

from Google Spotlight Stories1 [54]. In “Buggy Night” and “Piggy,” the viewer is essentially part of

the story, either scaring the flies by looking at them in “Buggy Night,” or catching Piggy stealing

a cake. The ending of the “Batman: Arkham VR” [117] video game uses an offscreen action effect

to simulate the player’s hallucinations. Disney’s “Cycles” [144] animation fades out the lighting

and action whenever the viewer looks away. Each of these examples is animated, and, presumably,

carefully hand-authored to run in real-time rendering engines; whereas our method can work with

live action video with comparatively lightweight authoring effort.

We are aware of only one example using live action video: “Wild: The Experience” [44] from

1These shorts are viewable in the Google Spotlight Stories app for iOS and Android. On YouTube, they do not
have view-dependent playback. “Piggy” also has a separate app in the Steam Store.

CHAPTER 2. RELATED WORK 11

Felix & Paul Studios. In the original short, a character may appear and disappear after certain

times, depending on the viewer’s head movements. The video plays for a fixed duration regardless;

there is no gating, and thus no guarantee that the viewer will see significant events.

Chapter 3

ZoomShop

a b c

Figure 3.1: Using ZoomShop to edit a photograph [139]. (a) An image of mountains (background)
framed by trees (foreground). The user’s goal is to make the boat bigger while keeping the framing of
foreground trees. (b) Zooming in and cropping scales up the boat, but cuts out most of the trees and
shore. (c) Left: With ZoomShop users can select depth ranges (yellow and green) and independently
adjust each region while maintaining scene structure. Disoccluded and stretched pixels are shown in
cyan. Right: Cyan pixels from image are manually inpainted using Photoshop’s Content-Aware Fill.
We show the top-down view volume and boundary curve of each camera above the corresponding
images in a, b, and c.

In this chapter, we explore the task of adjusting relative object size, foreshortening and positions

in photographs. Consider Figure 3.1a, a photograph of a boat on a lake framed by trees. The

photographer may wish to make the boat appear larger, which can be achieved by zooming, but the

trees and the shore go out of frame (Fig. 3.1b). A longer lens from further back might satisfy both

goals, but may be impossible due to physical constraints. With varying degrees of manual effort,

today’s digital tools allow adjusting the sizes of scene objects in a plausible, if not geometrically

accurate, way [93]. There are many methods that can arbitrarily adjust object sizes [13, 31, 128,

20, 124], but these methods can fail to preserve important spatial relationships, which is a major

component of realism.

12

CHAPTER 3. ZOOMSHOP 13

In this work, we identify a set of task-dependent realism constraints and design a new image

manipulation tool, ZoomShop, to apply these constraints as the user makes edits. By applying

task-dependent realism, ZoomShop increases the space of realistic-looking edits and automatically

preserves important realism properties while the user explores edits.

3.1 Editing Photographic Composition

a b c d

Figure 3.2: Venice [137]. Goal: scale up distant building while keeping the boat in the same place.
(a) Original photo. (b) Zooming in and cropping. (c) Cutting out the building, scaling it, and
pasting it back in may not preserve depth structure due to lack of scene depth understanding. Here,
the building occludes side buildings and boats, and the poles in front are cut in half (marked with
boxes). (d) Our result with inpainting (manual guidance).

We first understand a hypothetical photographer’s editing goals with the example in Figure 3.2.

Upon taking the photo, the photographer realizes the distant building, the Santa Maria della Salute

(“Salute”), appears smaller in the image than they would like and wishes to make it larger.

Goal 1. Make a target object appear larger or closer.

Zooming in and cropping scales the Salute but cuts out the foreground boat (Fig. 3.2b). As compo-

sition is important to balance the image, the photographer wishes to preserve it as in the original

photo.

Goal 2. Maintain scene element visibility.

Cutting out the Salute, resizing it, and pasting it back in (Fig. 3.2c) create artifacts where the

docking poles in front are cut in half and nearby elements are occluded (depth ordering), and care

must be taken to ensure the resized Salute contacts the unedited ground (depth continuity).

Goal 3. Maintain scene element spatial relationships.

3.1.1 Task-Dependent Realism

In this task, the user-input parameters (I) are a set of objects or regions and their desired amount

of change in scale or offset (Goals 1 & 2). As shown in the above example, spatial relationships are

important properties to maintain (M). Specifically, for this task, depth structures are critical to

CHAPTER 3. ZOOMSHOP 14

perceived realism, which include depth continuity and ordering (Goal 3). To automatically maintain

constraints M as users manipulate I, we use scene depth information. However, if we strictly

adhere to linear perspective, the changes in scale and foreshortening of objects may be limited due

to the scene structure. For example, in Figure 3.3a, if we fix the foreground ridge and enlarge

the lighthouse while maintaining linear perspective on the scene, we cannot enlarge the lighthouse

beyond the width of the cliff that the lighthouse rests on. To enlarge the lighthouse even more while

maintaining realism, we need to adjust the size of the cliff itself, as well as the road leading up to

the cliff because they are connected in depth (Figure 3.3c).

In this work, our insight is that we can relax light ray properties (R) to smoothly vary changes

in scale across depth; even if light rays are not straight, we can still produce realistic-looking results

for this task. By relaxing these constraints R, we are able to achieve changes at larger scales than

was possible before and parameterize the solution space to automatically maintain M as the user

manipulates I.

a b c d

Figure 3.3: Lighthouse [97]. Goal: enlarge lighthouse while keeping compositional element of the
foreground ridge. (a) Original photo. (b) Zooming in and cropping. (c) Our result. (d) Our result
with inpainting (automatic).

3.1.2 Overview

We present ZoomShop, a digital image editing tool that uses knowledge of the image’s 3D geometry to

provide the specific controls needed to edit photographic composition while maintaining important

image structures (Fig. 3.1c). With ZoomShop, users can select image regions based on depth,

adjust relative scaling of each region, adjust foreshortening within each region, and translate objects

horizontally within regions. These controls allow users to make high-level adjustments to the 3D

structure of the image: they can enlarge distant objects, maintain foreground framing, adjust the

foreshortening of an object to emphasize its 3D shape, and adjust the relative sizes and positions of

objects at the same depth.

CHAPTER 3. ZOOMSHOP 15

Our key technical contribution is to support user editing goals with a combination of a non-linear

camera model and a depth-aware rubber sheet warp. Our novel camera model consists of a depth-

varying scale function that is defined by a piecewise linear, smooth, and/or discontinuous curve.

Given an input image and its depth map (either measured or estimated), ZoomShop maps the user’s

edits to our non-linear camera model and then reprojects the scene. Then the user can select regions

and translate them horizontally. These translations define the objective function of our depth-aware

rubber sheet warp, which is used to warp the image for the final result. The ZoomShop interface

enables the user to select where and how deviations from linear perspective occur to support their

size, position, and foreshortening goals, providing complete control over the final image appearance

to the user.

We demonstrate ZoomShop’s capabilities on examples, adjusting scale and foreshortening while

maintaining framing, and show how it differs from other linear and non-linear imaging models.

We use off-the-shelf computer vision algorithms to infer scene depth [113] and fill holes [2, 20]; we

expect even better methods to be available for these subtasks in the near future, given the fast pace

of progress in these fields. While we focus on outdoor scenes, ZoomShop is potentially useful for

any scene exhibiting a large range of depths. We believe ZoomShop provides a useful new way to

approach photography.

3.2 Method

To achieve the goals in Chapter 3.1, we split the problem into two complementary sub-problems:

editing objects at different depths, and editing objects at the same depth. To edit objects at different

depths, we reproject the image with a non-linear camera model that enables depth-dependent scaling.

The user can resize an object at a target depth (Goal 1), maintain the scale (and thus visibility) of

objects at other depths (Goal 2), and ensure smooth transitions between target regions to maintain

spatial relationships (Goal 3). Since the scale is per-depth, objects at the same depth are all scaled

the same, which may push some objects out of view. To support maintaining visibility in this case,

we apply a rubber sheet warp to the image to translate peripheral objects back into view (Goal 2).

The warp is also depth aware, to ensure it maintains depth continuity (Goal 3).

3.2.1 Editing Objects at Different Depths

To edit objects at different depths, we present a novel non-linear camera model defined by a boundary

curve b(z) that supports depth-dependent scaling.

Figure 3.4a shows a top-down view of a camera frustum, with the camera at the origin. Let f

be the camera focal length, (Pw, Ph) the half-width and half-height of the image plane, and Znear

and Zfar the camera near and far planes. Linear perspective maps 3D scene points p = (x, y, z) to

CHAPTER 3. ZOOMSHOP 16

x

z
ZfarZnear

P

}

f

COP
p

(x, z)

Image
Plane

b(z)
Pnear

Pfar

(a) Linear Perspective. P is the
half-width of the image plane in
world space. Znear and Zfar are
the z-values of the near and far
plane, and f is the focal length
of the camera.

x

z

Image
Plane

B(z)

b(z)

b(z)

(b) The original boundary B(z)
is in red. Scaling is equivalent
to zooming in and cropping (yel-
low). Decreasing the foreshort-
ening of some depth range is
equivalent to using a longer fo-
cal length and moving the cam-
era back (blue).

x

z
z0

z1= z2 z3 z4
z5

P0

P1 P3
P4

P5

P2 (x, z)
Image
Plane

(c) b(z) with curved, linear, con-
tinuous, and discontinuous seg-
ments. To support discontin-
uous b(z) curves, our tool al-
lows zi = zi+1, Pi �= Pi+1. In
such cases, our tool sets b(zi =
zi+1) = Pi+1.

Figure 3.4: Our non-linear camera model is defined by its boundary curve b(z).

image coordinates u, v ∈ [−1, 1] by

u =
f

Pwz
x, v =

f

Phz
y (3.1)

We allow b(z) to be any function over z ∈ [Znear, Zfar]. Given b(z) and the image aspect ratio

λ = Ph/Pw, the mapping from a scene point to image coordinates is

u =
x

b(z)
, v =

y

λb(z)
(3.2)

b(z) defines the x-boundary of the view volume (Figure 3.4a), while the y-boundary is λb(z). Only

points within the x- and y-boundaries are included in the output image: Znear ≤ z ≤ Zfar , −b(z) ≤
x ≤ b(z), and −λb(z) ≤ y ≤ λb(z). For all boundary curves, scenes are rendered in reverse depth

order (back to front) to maintain occlusion relationships.

Note that the view volume boundary b(z) at a given depth z is inversely related to the scale of

scene points at z in the image (Equation 3.2). Therefore, we can manipulate b(z) to change the size

and foreshortening of objects in the output image.

To resize an object at p = (x, y, z) by a scale factor s so (u′, v′) = (su, sv), we set b(z) = B(z)/s,

where B(z) is the input photograph’s original camera boundary curve, B(z) = Pwz/f . This is a

linear function, so applying b(z) uniformly scales all image points by s and is equivalent to zooming

and cropping (Fig. 3.4b). To resize the foreground and background separately, we can define b(z) as

a non-linear function of depth.

We can also use b(z) to adjust scene foreshortening (change in size over depth) by changing

CHAPTER 3. ZOOMSHOP 17

a b

Figure 3.5: Monument Valley [136]. ZoomShop scales scene points at the same depth by the same
amount. (a) Original photo. (b) Side hills (green) are scaled up but are moved partially out of view;
disoccluded pixels are shown in cyan. To fix this, ZoomShop includes a depth-aware image warp to
translate the side hills back into view.

db(z)/dz over some range (Fig. 3.4b). For example, decreasing the slope of b(z) decreases fore-

shortening, compressing depth and making background objects appear closer. This is equivalent

to increasing the camera’s focal length while pulling the camera back (as in a dolly-zoom shot).

With a non-linear b(z), we can achieve this result without moving the camera, and we can also

independently adjust the foreshortening of different depth ranges.

Our camera model supports image formation under Equation 3.2 for b(z) composed of any number

of segments that are straight, curved, or discontinuous (Fig. 3.4c). Straight segments yield local linear

perspective, but the image regions where different straight segments abut may have visible bending

artifacts. Curved segments can be used to create smooth transitions between other segments by

maintaining tangent continuity of b(z), but will not preserve straight lines. Discontinuities occur

when two b(z) segments abut at different depths, creating a jump in scale in the output image.

Discontinuities are useful when image features (e.g. texture or occlusions) allow hiding the transition.

Choosing the correct set of segments depends heavily on the scene and desired results, so ZoomShop

presents these options to the user.

3.2.2 Editing Objects at the Same Depth

Our camera model scales all points at the same depth uniformly. While this helps maintain spatial

relationships between nearby objects, it can also move peripheral objects out of the image. For

example, Figure 3.5 has two hills at the same depth on each side. Scaling them up pushes the hills

out of view (i.e., no longer contained by b(z)). In order to maintain their new size and keep them

CHAPTER 3. ZOOMSHOP 18

visible, ZoomShop includes an image warp optimization to translate objects back into view. Our

optimization is depth-aware, so pixels that have similar depths are translated by similar amounts,

while pixels at different depths can be translated differently.

Given user-defined regions R1, R2, ...RK and a corresponding desired translation T 1, T 2, ...TK

for each one, we solve for a per-pixel translation map ti,j for each pixel i, j. To reduce the search

space of ti,j , we limit the search to horizontal translations only. This is a reasonable limitation

because objects that are attached to the ground should remain on the ground after translation, but

it is straightforward to extend to 2D translations if needed. For a pixel at (ui, vj), the new location

is (ui + ti,j , vj).

Our goal is to smoothly propagate translations across continuous depths. Thus, we minimize the

following objective function:

min
t

λsEsmooth + Ereg (3.3)

subject to ti,j = T k, ∀i, j ∈ Rk, k = 1...K (3.4)

where the input region translations are hard constraints and λs adjusts how quickly translations fall

off. We used λs = 105 in all of our results.

The smoothness term encourages ti,j to vary smoothly across pixels at the same depth:

Esmooth =
1

N

∑
i,j

[wv
i,j(ti,j+1 − ti,j)]

2 + [wh
i,j(ti+1,j − ti,j)]

2 (3.5)

where N = 2WH − W − H is the total number of pairs of neighboring pixels for image width W

and height H.

The smoothness weights are reduced at depth discontinuities:

wv
i,j = αvσ(|zi,j+1 − zi,j |) = αv

1

1 + eβ(|zi,j+1−zi,j |−γ)
(3.6)

wh
i,j = αhσ(|zi+1,j − zi,j |) = αh

1

1 + eβ(|zi+1,j−zi,j |−γ)
(3.7)

αv and αh adjust the relative penalty between vertically and horizontally adjacent pixels. To avoid

shearing of objects resting on the ground, we penalize translation differences across vertical pixels

more than horizontal pixels. We use αv = 5, αh = 1 for all results. The sigmoid function σ selects

the range of depth differences where the energy term is nonzero. We empirically found that β = 104,

γ = 10−4 works well.

We additionally include a regularization term:

Ereg =
1

WH

∑
i,j

t2i,j (3.8)

CHAPTER 3. ZOOMSHOP 19

x

z

(a) Step 1: Enlarge the
statue (blue rectangle).
Selecting the depth range
adds a linear segment
(bold red). Increasing
the scale of the selection
moves the bold red seg-
ment to the bold green
segment. The slope re-
mains the same, which
preserves the foreshorten-
ing of the statue.

x

z

(b) Step 2: Expand depth
of the steps (light blue
rectangle). Selecting the
depth range adds an-
other another linear seg-
ment (bold red). In-
creasing the foreshorten-
ing changes the slope of
the bold red segment to
the bold green segment.

x

z

(c) Step 3: Toggle be-
tween smooth and linear
interpolants. The smooth
mode uses a cubic inter-
polant to connect the lin-
ear segments (dotted ma-
genta). The linear mode
uses linear segments (solid
gray).

x

z

(d) Step 4: Translate
pillars (blue circles) into
view. Enlarging the
statue (blue rectangle)
caused the two pillars to
move out of frame (i.e., no
longer contained by the
boundary curve). The
image warp optimization
moves them back into
view.

Figure 3.6: Example user workflow. Top-down layout of a statue (blue rectangle) flanked by pillars
(blue circles) on a platform (purple region), with steps (light blue) leading up to it.

This encourages the optimization to find the smallest deformation that satisfies the user’s input.

3.3 The ZoomShop Application

ZoomShop implements our non-linear camera model and depth-aware rubber sheet warp as the

basis for editing an image. The full workflow requires ingesting input images, representing boundary

curves, the user interface, and rendering the final result.

3.3.1 Input Geometry

We begin with an input RGB image, and generate a non-metric disparity map from MiDaS [113, 127].

We manually clean up any obvious errors using Adobe Photoshop 2021 [2], convert it to a non-metric

depth map, and then use it as the depth of a per-pixel triangle mesh as our 3D scene. For each pixel

disparity d ∈ [0, 1], we compute depth z(d) = 1
d+0.1 , and we set the input camera’s vertical field of

view to θv = 55◦. While this does not produce a geometrically accurate scene, it preserves relative

depth ordering and is sufficient for our needs.

CHAPTER 3. ZOOMSHOP 20

3.3.2 Boundary Curve Representation

The original boundary curve of the image is B(z) = Pwz
f and the new boundary curve after user edits

is b(z). We represent b(z) as a series of control points (zi, Pi), i = 1...N (Fig. 3.4c). z1:N is a list

of depths in increasing order, and P1:N are the boundary positions at those depths. These control

points are interpolated with linear and cubic segments to form the b(z) curve. Discontinuities are

supported by consecutive control points sharing the same z value. Initially, there are only two control

points z1:2 = {Znear, Zfar} and P1:2 = {B(Znear), B(Zfar)} that define the original boundary. As

the user edits the image, ZoomShop updates the control points and reprojects the image in real-time.

3.3.3 User Controls

ZoomShop presents a set of controls to edit the image appearance, which are used to construct the

boundary curve and rubber sheet warp.

First, the user selects a depth range by clicking on a target object to edit. ZoomShop creates

a new linear boundary curve segment at the target object depth with two control points zi, zi+1. All

image pixels within the depth range are highlighted, and the user may refine the selection further

by adjusting the start and end depths. The boundary positions for the segment are initialized to

Pi = b(zi) and Pi+1 = b(zi+1).

After selecting an image region, the user may adjust its scale, which changes Pi, Pi+1 while

keeping zi, zi+1 fixed. For a scale value s, P ′
i = B(zi)/s and P ′

i+1 = P ′
i +(Pi+1−Pi), which preserves

the slope of the linear segment.

The user may also adjust the foreshortening of the selected region, which controls how

image size changes over depth. This is akin to changing the camera focal length, a commonly used

photographic technique to compress or emphasize the depth of an image. The user adjusts the

foreshortening of a region by changing the scale at the back Pi+1 while fixing the scale at the front

Pi, which changes the slope of the boundary curve segment. Fixing Pi ensures the image size does

not change, allowing foreshortening and scale to be adjusted independently.

Each image region the user adjusts corresponds to a linear segment in the boundary curve. In

between those segments, the user can select the interpolants that complete the curve. By default,

ZoomShop uses a cubic interpolant to ensure the boundary curve has smooth tangents so there are

no abrupt changes in scale in the output image, but this may result in straight lines in the image

becoming curved. Alternately, the user can select linear interpolation, which yields a piecewise linear

boundary curve that preserves straight lines within regions, but may have visible bending artifacts

at region transitions.

After editing an image, the user may find that some scaled objects have moved to undesirable

locations (e.g. out of the image), so they can translate the objects to better positions. The user

selects one or more 2D rectangles and moves them horizontally to the target locations, which become

the hard constraints of our depth-aware rubber sheet warp.

CHAPTER 3. ZOOMSHOP 21

3.3.4 Translation Map

ZoomShop generates the per-pixel translation map from the user’s edits by optimizing the con-

strained objective of the depth-aware rubber sheet warp. To save computation time, ZoomShop

scales the image down to the same size as its depth map, computes a per-pixel translation map

on the scaled-down image, and then upsamples the output translation map back to the original

image size. ZoomShop uses PyTorch’s L-BFGS optimizer, which can take 2–10 minutes to complete,

depending on the size of the depth map.

The optimization relies on computing the change in depth for each pixel among its neighborhood,

which requires depth values to be available at every pixel. However after reprojecting the image

using our camera model, there are disoccluded regions that have no depth information. Therefore,

while translation rectangles are visualized on both the input and scaled images, users mark and

adjust the rectangles on the input image, and the translation map is also computed on the original

image.

3.3.5 Image Synthesis

To synthesize the final image, ZoomShop first applies the translation map (if any) by displacing the

input mesh vertices. Then ZoomShop applies a per-depth scale factor to the scene based on the new

b(z). Each vertex at depth z is scaled about the image center by B(z)/b(z). When rendering the

output image, we identify and remove disoccluded, stretched, and sheared pixels; these are shown

as cyan in our results.

To fill in the removed pixels, we use Photoshop’s Content-Aware Fill (CAF) [2, 20]. For some

results, the fully automatic CAF works well, but for other results, it was necessary to manually

specify regions for CAF to sample from when inpainting. In those cases, we show both automatically

and manually inpainted results side-by-side. The final image quality depends on the inpainting,

which is an active area of research [85, 152] that we expect to continue to improve rapidly.

3.3.6 Example Workflow

We give an example of a hypothetical user workflow in Figure 3.6, which shows a top-down illustrated

layout of a statue (blue rectangle) flanked by pillars (blue circles) on a platform (purple region), with

steps (light blue) leading up to it. Upon taking the photo, the user realizes the statue appears too

small and wants to enlarge it. So they first select a depth range that contains the statue and increase

its scale (Fig. 3.6a). After scaling the statue, the user realizes the foreground steps appear too short

and wants to expand their depth. So they select a depth range containing the steps and increase

its foreshortening (Fig. 3.6b). After modifying these two depth ranges, the user toggles between the

smooth and linear interpolants (Fig. 3.6c), and finds that linear interpolation creates a noticeable

bend in between the steps and the platform, while the platform does not contain visually important

CHAPTER 3. ZOOMSHOP 22

a b c d

Figure 3.7: Eiffel Tower [92]. Goal: enlarge the Eiffel Tower while keeping the Gargoyle visible. (a)
Original photo. (b) Zooming in and cropping. (c) Our result. (d) Our result with inpainting (top:
automatic; bottom: manual guidance). We break the scene up into three depth ranges; the gargoyle,
the intermediate buildings, and the Eiffel Tower. The intermediate depth range maintains linear
perspective for the buildings, and we place the discontinuity between the far two depth ranges in a
highly textured region for easier inpainting.

a b c d

Figure 3.8: Seal Rocks. Goal: enlarge Seal Rocks (background) while keeping Cliff House (fore-
ground, left) in view. (a) Original photo. (b) Zooming in and cropping. (c) Our result. (d) Our
result with inpainting (automatic).

straight lines. Therefore, they select smooth interpolation. Finally, the user finds that the pillars

next to the statue have been moved out of the image, so they select the pillars and translate them

back into view (Fig. 3.6d).

3.4 Results

We used ZoomShop to edit a variety of images with different composition goals. For each result,

we show the original photo, the zoomed-and-cropped baseline, our modified image after applying a

nonlinear b(z), and inpainted final results. In cases where manually guided inpainting is necessary,

we show both automatic and manual results side-by-side. We also show the view boundary used for

each camera model (shown as top-down diagrams).

Our results are 2536 pixels wide and depth maps are 640 to 2048 pixels wide, with heights

CHAPTER 3. ZOOMSHOP 23

a b c d

Figure 3.9: Versailles [96]. Goal: enlarge the Versailles palace while keeping the fountain fixed.
a) Original photo. (b) Zoom in and crop. (c) Our result. (d) Our result with inpainting (top:
automatic; bottom: with manual guidance). We use a linear interpolant and select depth ranges
that border the start and end of the lawn. This hides bending artifacts where the perspective
changes.

a b c d

Figure 3.10: The Vessel. Goal: expand depth of the steps leading up to the Vessel. (a) Original photo.
(b) Zooming out and cropping. (c) Our result. (d) Our result with inpainting (left: automatic; right:
with manual guidance).

a b c d

Figure 3.11: Biker Bridge. Goal: compress the depth of the bridge to better match our memory. (a)
Original photo. (b) Zooming in and cropping. (c) Our result. (d) Our result with inpainting (top:
automatic; bottom: with manual guidance).

CHAPTER 3. ZOOMSHOP 24

da b c

Figure 3.12: Buddha. Goal: enlarge the Buddha statue while keeping the left tower in view. Magenta
and blue rectangles mark the input to our translation optimization. (a) Original photo. (b) Scaled
up Buddha statue. (c) Our result (top: translation map). (d) Our result with inpainting (top:
automatic; bottom: with manual guidance).

da b c

Figure 3.13: Monument Valley [136]. Goal: enlarge the hills, keeping all three fully visible. Magenta
and blue rectangles mark the input to our translation optimization (each pair of rectangles has the
same size; magenta overlays blue rectangles). (a) Original photo. (b) Scaled up hills. (c) Our
result (top: translation map). (d) Our result with inpainting (top: automatic; bottom: with manual
guidance).

CHAPTER 3. ZOOMSHOP 25

a b

Figure 3.14: Lighthouse [97]. Two depth ranges are connected by (a) a curved (cubic Bézier)
segment; (b) a linear segment. A linear segment yields an artifact at the far boundary of the yellow
depth range, where the road bends suddenly (red boxes). A cubic segment smoothly varies the
transition and avoids the artifact.

a b

Figure 3.15: Versailles [96]. Two depth ranges are connected by (a) a curved (cubic Bézier) segment;
(b) a linear segment. A curved segment does not preserve the straight lines of the lawn, creating
a visible artifact (red circles). A linear segment preserves straight lines but can introduce a bend
artifact. The artifact is hidden here because the segment boundaries are at the start and end of the
lawn.

CHAPTER 3. ZOOMSHOP 26

a

b

Figure 3.16: Tourism [67, 64]. (a) Goal: enlarge Big Buddha. (b) Goal: enlarge the Eiffel Tower.
Left column: original photos. Right column: output images inpainted with manual guidance.

determined by aspect ratio. Manual clean-up of estimated disparity maps (by a novice user) takes

5 minutes to 3 hours. Scale and foreshortening edits are real-time with immediate feedback. The

optimization for object translation takes 2 to 10 minutes. Inpainting with manual guidance takes

5 minutes to 1 hour. Although some manual effort is necessary, we focus on ZoomShop’s core

contribution of editing composition and rely on the rapidly advancing research for depth estimation

and inpainting.

First, we focus on results where we adjust scaling. Figure 3.1 shows enlarging a boat while keep-

ing foreground trees to maintain framing. Similarly, Figures 3.2 and 3.3 create balance by making

important background objects (building, lighthouse) more prominent relative to less important fore-

ground objects (boat, ridge). In Figures 3.7 and 3.8, the foreground objects establish the context of

where each photo was taken from so these elements are preserved while making the primary subjects

larger. In Figure 3.9 the background building is really much larger than the foreground fountain, so

it is emphasized by enlarging it.

Next we adjust foreshortening. The structure in Figure 3.10 is diminished and the foreshortening

of the stairs increased, expanding their depth, to create a more dramatic appearance. Conversely,

in Figure 3.11, the foreshortening of the bridge is decreased, compressing its depth and making the

scene feel closer.

Finally, we use translation to maintain visibility of important objects. In Figure 3.12 enlarging

the statue pushes the tower out of the image, so it is smoothly translated with the connected wall

back into view to restore framing. Multiple objects can also be translated, as in Figure 3.13, where

two of the three hills get scaled out of the frame, and are both moved back towards the center with

the ground in front smoothly varying.

CHAPTER 3. ZOOMSHOP 27

da

b

Original c

Naive Scaling

Naive Scaling
+ vertical shift ZoomShop

Figure 3.17: Biker bridge. Comparison with naively scaling depths independently. (a) Original
photo. (b) Naively scaling the church breaks depth continuity and causes the church to become
detached from the ground. (c) Users must take care to vertically shift the scaled region to reconnect
to the ground. As shown in the horizontal (purple) and vertical (blue) scale maps, this naive
approach only uniformly scales pixels of the church. (d) ZoomShop’s camera model automatically
accounts for depth continuity and prevents the church from detaching from the ground. As shown in
the scale maps, ZoomShop scales the pixels of the ground in front of the church as well, to provide
a smooth transition of scale across depth.

We use smooth interpolation for all results except for Figure 3.9, where smooth interpolation

causes the lawn in front of the building to curve. In that case, we use linear interpolation and select

depth ranges that border the start and end of the lawn to hide the perspective changes. Figures 3.14

and 3.15 give further examples of the impact of smooth vs. linear interpolation. Figure 3.16 shows

other examples of tourism.

3.4.1 Comparisons to Alternatives

Scaling with ZoomShop’s camera model is different from naively dividing the scene up into multiple

depths and scaling each depth independently (Figure 3.17). Naively scaling scene elements can easily

break depth continuity, whereas ZoomShop’s camera model automatically accounts for it (unless the

user intentionally chooses to break depth continuity by opting for a piecewise discontinuous model).

Niklaus et al. [103] create animations from an image by reconstructing the 3D scene and moving

CHAPTER 3. ZOOMSHOP 28

a b

Figure 3.18: Eiffel Tower [92]. This result from Niklaus et al. [103] moves a virtual camera through
the 3D scene creating a short animation. (a) The start of the animation. (b) The end of the
animation. Because the camera uses linear perspective, it cannot enlarge the Eiffel Tower while
keeping the gargoyle in view. Moving the camera forward makes the tower bigger but cuts out the
gargoyle.

the camera through the scene. While their method also incorporates depth, their camera model uses

linear perspective and thus cannot be used to scale foreground and background elements differently

(Fig. 3.18). Since their goal is to add parallax in their animations, as opposed to photographic com-

position editing, they do not provide controls for adjusting object size, foreshortening, or position.

While our camera model is inspired by Computational Zoom [14], our model is more general

and supports additional features that are significant to our results. First, ZoomShop supports

non-monotonic boundary curves, i.e., segments of b(z) with negative slope, which enables resizing

background objects more dramatically (Fig. 3.19). Second, ZoomShop supports smooth interpolation

of the boundary curve, which can be used to reduce visual artifacts in certain types of scenes

(Fig. 3.14). Third, ZoomShop supports discontinuous boundary curves, which enables adjacent

depths to be scaled very differently for greater artistic control (Fig. 3.7). Finally, ZoomShop can

operate on a single image and depth map, whereas Computational Zoom requires acquiring multiple

images to reconstruct the 3D scene, which would not be possible in may of our results due to physical

constraints (Fig. 3.2) and scene motion (Fig. 3.11).

3.4.2 User Impressions

We asked two novice users to try out ZoomShop and give us feedback. Each user adjusted two

images; one provided by us (Figure 3.3) and one they provided themselves. Before adjusting the

images, they first stated their editing goals. Both users chose to enlarge some distant object while

keeping some foreground elements fixed or reducing their size. In their feedback, both users claimed

they achieved their photo editing goals and liked their results, except for artifacts due to depth

CHAPTER 3. ZOOMSHOP 29

a b

Figure 3.19: Seal Rocks. Comparison with Computational Zoom [14]. (a) ZoomShop’s camera
model supports non-monotonic boundary curves with negative slope segments, such as on the water
between the yellow and green regions, which allows greater changes in scale. (b) Computational
Zoom does not support negative slopes, limiting how large we can scale up Seal Rocks while keeping
the Cliff House in place.

estimation issues, and assuming that the removed pixels (in cyan) will be inpainted well. One

user commented that they often wished to achieve similar edits in their photographs and claimed

that ZoomShop was “fun to play with,” “really cool,” “useful and easy to make a depth composite

image,” “much easier than Photoshop.” Due to unfamiliarity with the controls, both users had

minor hiccups when adjusting images but were able to achieve their goals after 1-3 attempts. One

user gave some suggestions on using different keyboard mappings for the controls, but both claimed

that the controls were “intuitive.”

3.5 Discussion

For most of the results, it was necessary to manually clean up the disparity maps from MiDaS

[113, 127] before using them as input to ZoomShop. Disparity values are inversely related to depth;

for simplicity, we discuss our corrections in terms of depth instead of disparity. We include some

examples before and after correction in Figure 3.20.

While metric-accurate depth is not necessary for ZoomShop to generate acceptable results, scene

elements do need to have correct depth ordering. When two depths are scaled in different relative

amounts under a new b(z), any relative errors between the two depths become more pronounced

after scaling and can lead to jarring inaccuracies in the scaled 3D scene. Example distortions include

altered object borders (Figure 3.20a), stretched objects (Figure 3.20b), and wrong occlusions (Figure

CHAPTER 3. ZOOMSHOP 30

a b c

Figure 3.20: Correction of Depth Estimation Errors (left: before correction. right: after correction).
(a) Blurry edges in Eiffel Tower [92]. Before correction, inaccurate depth estimation along the
gargoyle’s borders leads to depth bleeding in the 3D scene (top, left) and causes its borders to change
after scaling (bottom, left). After correcting the depth inside the gargoyle, the gargoyle’s outline
is preserved (bottom, right). (b) Incorrect depth within scene elements in Versailles [96]. Before
correction, the tourists received the same depth as the receding ground and became significantly
distorted after scaling (bottom, left). After correction, the tourists remain vertical on the ground
(bottom, right). (c) Missed fine features in Mountain Lake Trees [139]. The sky region between the
leaves received the same depth as the leaves (top, left); after scaling, the sky incorrectly occludes
the mountains (bottom, left). Fixing the depth of the sky between the leaves preserves depth order
after scaling (bottom, right).

3.20c).

To fix these errors, we manually masked objects with incorrect depth ordering (e.g., gargoyle)

using a combination of Photoshop’s Lasso Tool and color range selection [2]. We then added a fill

layer with the correct color for the masked region (e.g., fill entire gargoyle with the same color as the

ledge it rests on). Because this process is time-consuming, the total time to make manual corrections

depends on scene complexity (i.e., more regions to mask) and image resolution (i.e., mask boundaries

need to be more accurate, and object outlines need to be more crisp).

For high-quality results, monocular depth estimation needs to produce correct depth ordering

among scene elements, correct relative depth inside individual scene elements, and align depth

boundaries with object edges. For photographs with humans, depth boundaries need to correctly

align with the person’s outline and may face more difficulty capturing fine hair. To avoid distortions

of 3D face shapes, users can select the person inside a single depth range when making edits.

As mentioned in Section 3.3.5, Photoshop’s CAF [2, 20] has limitations when automatically

inpainting removed pixels. In general, CAF automatic inpainting works well for images whose

missing pixels are only textured regions, but regions with more scene structure (e.g., the horizon,

object boundaries) often require manually specifying regions for CAF to sample from (Figure 3.21) .

For high-quality results, automatic inpainting should respect high-level scene structures in addition

to extending textured regions.

CHAPTER 3. ZOOMSHOP 31

b

a

Figure 3.21: Inpainting: automatic (left) vs. manually guided (right). (a) Venice [137]. Automatic
inpainting pasted some water texture where the sky should be. (b) Biker bridge. Automatic in-
painting caused objects to “bleed” pixels beyond their boundaries. In both of these examples, we
fixed these issues by manually specifying regions for CAF to sample from (e.g., sky).

Despite current limitations in depth estimation and inpainting, the extraordinarily rapid pace of

recent progress [113, 127, 95, 146, 72, 79, 69, 135, 86, 160, 157, 91] suggest these areas will improve in

the coming years. Our goal is to provide new, useful ways to edit photographs given these techniques.

3.6 Limitations and Future Work

Our non-linear camera model constrains all scene points at the same depth slice to scale by the

same amount. While our optimization for object translation makes a step towards non-uniform

scaling of scene points at the same depth, future work can investigate ways to make this feature

more interactive and/or find other types of user control to non-uniformly scale depth. This could

be useful if multiple objects are at the same depth, but the user would like to make some of them

larger and more prominent than others.

ZoomShop does not automatically preserve straight lines in the image. Users can select depth

ranges in regions where they want linear perspective (where straight lines are preserved) or use a

linear interpolant. Future work could find ways to automatically preserve straight lines, regardless

of the boundary curve.

ZoomShop lets users choose how to break up a scene by selecting depth ranges, how to piece the

modified regions together using interpolants, and whether or not to break depth continuity in turn

for greater changes in scale. While these features give users lots of flexibility to achieve a wide range

CHAPTER 3. ZOOMSHOP 32

of compositions, future work can investigate ways to automatically determine salient depth ranges

and recommend boundary curves to the user.

3.7 Chapter Summary

In this chapter, we focused on the task of manipulating relative object sizes, foreshortening, and

positions in photographs and identified a set of task-dependent realism constraints for this task. We

showed that the important properties to maintain (M) are depth structures, which include depth

continuity and ordering. We also showed that we can relax (R) light ray properties to achieve

a larger space of feasible solutions. Specifically, we demonstrated that even if light rays are not

straight, we can still produce realistic-looking results for this task and achieve changes at larger

scales than possible if we strictly adhered to those light ray properties. The input parameters (I)

for this task are the selected pixels and amount of change (e.g., scale or offset).

We then presented ZoomShop, which applies the task-dependent realism constraints M and R

as the user manipulates I and produces realistic-looking results. ZoomShop includes a non-linear

camera model parameterized by the view boundary curve and a depth-aware image warp optimiza-

tion to support object translation. These techniques enable a straightforward set of interactions for

users to edit images by adjusting the appearance of objects without having to understand 3D scenes

or camera models. We believe that ZoomShop increases the ways in which photographers can easily

manipulate photographs to improve their expressiveness and better match their artistic intent.

Chapter 4

Gated Clips

In this chapter, we explore the task of adaptively extending the length (time) of 360◦ videos to

satisfy gaze conditions. In 360◦ video, viewers have the freedom to look anywhere at any time;

however, they may miss important events outside their field of view. To ensure that viewers see

important events in 360◦ video, we introduce gated clips, which adaptively extend the length (time)

of the video until a gaze condition is met, such as looking at a specific region of interest (ROI).

Our goal is to create gated clips with realistic extended visual content based on the viewer’s

direction. We identify a set of task-dependent realism constraints for gated clips and design new

techniques to apply these constraints when generating gated clips. By applying task-dependent

realism, we increase the space of realistic-looking solutions and automatically preserve important

realism properties as the author specifies gates to achieve their storytelling goals.

360 Video with Sequential Playback Headset View 1 Headset View 2 360 Video with View-Dependent Video Textures

video loop

video loop

sequential play

sequential play

a b

Figure 4.1: In 360◦ video, viewers can look anywhere at any time. In the opening scene of Invasion!,
a rabbit emerges from a cave (a). In sequential playback, a viewer looking at the cave (green box)
will see the rabbit emerge, whereas a viewer not looking at the cave (red box) will miss this event.
We provide tools to guarantee that viewers see the region of interest (ROI) at the correct timecode
to witness the event (b). We introduce the concept of gated clips, where playback only continues if
the viewer satisfies a condition related to the ROI (green boxes). Otherwise, our player loops the
video using view-dependent video textures (red boxes).

33

CHAPTER 4. GATED CLIPS 34

Figure 4.2: Our prototype desktop video editing interface with a gated clip. The upper left pane
shows a preview of the headset FOV, which is output live to the Oculus Rift. The upper right
pane shows the full equirectangular view and marks the current headset FOV (pink border). The
video timeline on the bottom acts as a conventional video editor, with each dark blue rectangle
representing a clip. The first clip is a gated clip (white border). Filmmakers specify a gate timecode
(red vertical line on timeline), a ROI (green box) on the equirectangular frame, as well as other
parameters shown in the settings box below the clip. View-dependent arcs are shown as backward
arcs (red arrows) on top of the gated clip. In this example, the ROI is the aliens, and the gate
condition is a lookat gate, i.e., playback may not advance past the gate timecode unless the viewer
is looking at the ROI. To avoid static loops and reduce arcs with visual artifacts, the filmmaker can
set thresholds on the length of arcs and on the perceptual difference of arc transitions. After setting
all thresholds, the filmmaker can generate the view-dependent arcs by loading in (pre-processed)
arc costs and applying the gate. To have viewers jump to the gate timecode as soon as they see the
ROI, the filmmaker can also enable forward arcs that are under a perceptual threshold. Finally, the
filmmaker can choose to cross-fade the audio during loop transitions or choose to mute the audio
entirely.

CHAPTER 4. GATED CLIPS 35

4.1 Introduction

The medium of 360◦ video provides new artistic opportunities for filmmakers, allowing them to

create videos with a greater sense of immersion and engagement than with conventional video. Yet,

it also presents new challenges. In traditional cinematography, the director has full control over the

camera orientation, field of view, zoom, and focus at all times. Traditional filmmakers use these

controls to drive the narrative, ensuring that the viewer sees each important story element at the

right time. With 360◦ videos, however, directors no longer have this control, and viewers can look

in any direction at any time. As a result, viewers may miss important story content and become

lost or confused as the story progresses.

For example, in the animated short “Invasion!” [19], the story begins with an establishing shot

placing the viewer in the middle of an icy lake (Figure 4.1). Initially, the viewer is given time to

look around and become familiar with their surroundings. A rabbit eventually emerges from a small

cave. However, if the viewer is not looking at the cave entrance when the rabbit emerges, they will

not see the rabbit, or what it does next. A second type of example is in the “Stranger Things: The

VR Experience” [100] short film. As the tension rises, the viewer answers the phone, and is told to

turn around. Then, a monster attacks from the direction opposite the phone. If the viewer does

not turn around fast enough, they miss the monster attacking. A third type of example occurs in

“Wild: The Experience” [44], where the viewer is placed between a hiker and an empty rock, on

which a “ghost” appears only if the viewer is not looking at the rock. The hiker and the sound of her

breathing is intended to get the viewer’s attention away from the rock, so that the ghost can appear

outside the viewer’s field of view. However, if the viewer never looks away from the rock, the video

player will reach the end of the video without the ghost ever appearing. Although the directors

of these examples include passive gaze guidance techniques, such as audio cues, to encourage the

viewer to look in a particular direction, none of the techniques are foolproof.

We propose a new filmmaking technique called gated clips, designed to ensure that a viewer sees

key elements of the narrative in a 360◦ video. Using our technique, the filmmaker can author a gate

which ensures that playback may only proceed past a gate time only if a filmmaker-defined viewer

gaze condition is met, such as looking at a specific region of interest (ROI). For example, in the

“Invasion!” short, we can place a gate just before the rabbit emerges from the cave and treat the gate

ROI as the cave entrance. During playback, the gated clip would only proceed past the gate if the

viewer is looking at the cave entrance. Otherwise, it would wait for the viewer by extending video

content before the gate. Here, our goal is to generate gated clips with realistic extended content

until the gate condition is met.

CHAPTER 4. GATED CLIPS 36

4.1.1 Task-Dependent Realism

In this task, the user-input parameters (I) are the gate time, a region of interest (ROI), and a

viewing condition (e.g., look at the ROI). To preserve realism, the important properties to maintain

(M) are within-view spatiotemporal coherency, i.e., the visual content within the viewer’s field of

view should look coherent in space and time.

In gated clips, we cannot play past the gate unless the viewing condition is met. Up until the

gate time, the original clips have realistic visual content. However, if the gate condition is not met

by the time video playback reaches the gate, we need to extend the clip length with realistic visual

content until the condition is met. To achieve this, one of the properties which we can relax (R) is

linear time – the timeline of the gated clip does not need to adhere to the originally captured linear

timeline. Until the gate condition is met, we can allow the video to jump back to earlier frames and

loop seamlessly while waiting for the viewer. Our approach is inspired by video textures [120], which

play video frames out of order at places where it is unnoticeable for the viewer, thus extending a

finite-duration video into an indefinitely long one.

Conventional video texture algorithms, however, are too constraining for 360◦ video, because

they only allow transitions between frames when the change is imperceptible anywhere in the frame.

In 360◦ video, since the entire view-sphere is encoded in a single equirectangular frame, it is difficult

to find frames with imperceptible changes everywhere, due to the large amount of pixels. To combat

this, our insight is that the change only needs to be imperceptible within the viewer’s headset view.

That is, the second property we can relax (R) is out-of-view spatiotemporal coherency; the visual

content outside of the viewer’s field of view does not need to be coherent. To this end, we introduce

view-dependent video textures for 360◦ video, where the transitioned frames are selected based on

the viewer’s headset view at any given time. View-dependent video textures account for all possible

head trajectories, so if the viewer moves their head (thus changing the content within their FOV),

our technique ensures that there is at least one other frame to jump back in time to, such that

spatiotemporal coherency is always maintained within the headset view.

By relaxing these constraints R, we consider a significantly larger amount of visual content and

frame transitions, thereby increasing the space of realistic-looking gated clips. By applying task-

dependent realism, we are able to formulate the generation of gated clips as an optimization problem

and automatically maintain M as the user manipulates I.

4.1.2 Overview

We introduce new techniques to convert a standard 360◦ video clip into a gated clip with view-

dependent video textures. Viewing such gated clips requires a new kind of video player that seam-

lessly loops the 360◦ video playback until the gate condition is met. To prototype these ideas, we

present a user interface for editing 360◦ videos with gated clips (Figure 4.2). Our interface is built

on a conventional timeline interface, but with special shot types for gated clips. We demonstrate

CHAPTER 4. GATED CLIPS 37

results on five different videos, four of them professionally produced and not intended for use with

our technique. To understand viewer preferences, we ran a user study with standard and gated clips

and found that 9 out of 11 users preferred videos with gating.

4.2 Types of Gates

As mentioned above, a gated clip is comprised of the following elements: The gate timecode is a

specific frame in the clip. The video may only progress beyond the gate timecode when a gate

condition is met. We use the term timecode to describe a frame index into the video timeline, and

distinguish such timecodes from playback time, which may differ on each viewing due to looping.

We consider two types of gate conditions: (1) A lookat gate specifies that the viewer must see a

specific region of interest (ROI) at the gate timecode for the video playback to proceed, i.e., that the

ROI is within the viewer’s field of view (Figures 4.1 and 4.2). (2) An offscreen gate is the inverse

condition, i.e. it specifies that the viewer must not see the ROI at the gate timecode for video

playback to proceed.

We give examples of three narrative use cases for these two types of gate conditions. A common

trope in 360◦ filmmaking, such as in “Invasion!,” (see Introduction section) is that the viewer is

given a considerable amount of time to become familiar with a new environment before the first

main action begins; this is akin to an establishing shot in conventional filmmaking. In such cases,

authors could use a lookat gate when the viewer is initially placed in a new environment, with the

gate timecode and ROI located at the time and spatial location where the main action begins. In

the “Invasion!” example, the gate timecode would be placed at the time the rabbit first appears,

and the ROI would be placed at the cave entrance. Another narrative use case is when the viewer

is supposed to move their head in the middle of the story. For example, in “Stranger Things,”

the viewer is instructed to turn their head around in order to see the monster at the end of the

hallway. In such cases, the author could again place a lookat gate right before the next action starts

and set the ROI on the new target location. In this example, the ROI would be on the monster,

and the gate timecode would be right before the monster attacks. Finally, for surprising entrances

and disappearances, the author could use offscreen gates to ensure that the viewer does not see the

actual appearance or disappearance. For example, in the “Wild” example, the author could place

an offscreen gate right before the ghost appears and mark the rock as the ROI. That way, the viewer

must look away for the ghost to appear offscreen, and then the viewer could turn to look at the rock

and see the ghost.

CHAPTER 4. GATED CLIPS 38

Figure 4.3: Discretized view directions. This figure visualizes the FOVs of |V| = 6 discretized view
directions evenly spaced around the equator on an equirectangular frame from an example video.
In our implementation, we used |V| = 40. The horizontal FOV of each discretized view matches the
horizontal FOV of the Oculus Rift and covers the full vertical range of the video.

4.3 View-Dependent Video Textures

A video texture is a video clip that can be played back endlessly by adding seamless transitions

between non-sequential frames. Each transition occurs along an arc (t, t′), which transitions playback

from frame t to frame t′, over a user-specified cross-dissolve interval (our implementation uses a fixed

0.5 second cross-dissolve). By selecting arcs carefully, we can create seamless playback, in which

ghosting is minimized. There are three types of arcs: sequential arcs (t, t + 1), used in normal

playback; backward arcs (t, t′), t′ < t, and forward arcs (t, t′), t′ > t+ 1.

Constructing video textures normally involves finding seamless arcs (t, t′) between non-sequential

frames, such that cross-dissolving the video from frame t to frame t′ is imperceptible to the viewer.

The conventional approach is to measure some perceptual distance metric between the two frames.

However, measuring the image distance for the entire 360◦ equirectangular image is too conservative,

because viewers only see a small portion of the scene at any time; for example, typical VR headsets

only have roughly an 80◦ horizontal field of view.

The core idea of view-dependent video textures is the use of view-dependent arcs. View-dependent

arcs allow specific run-time transitions as long as the viewer is looking in a particular range of

directions. These transitions are selected to minimize perceptual difference within the field of view.

Specifically, we discretize the view-sphere with a fixed set of directions v ∈ V. A view-dependent

arc is then represented as a triplet (v, t, t′) and is computed based on the pixels visible within v.

We chose a discretization of |V| = 40 views. The views are equally-spaced around the equator

(Figures 4.3 and 4.4). In our test videos, there is more motion around the equator and virtually

CHAPTER 4. GATED CLIPS 39

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t

Figure 4.4: Visualization of view-dependent video textures for a gated clip. Each row corresponds to
one of the discretized viewing directions (here we show the first five views only). The gate timecode
is t = T , and v = 2 is the only view that satisfies the gate condition (green vertical line); other views
do not (red vertical lines). Red arrows show the computed backward arcs. Tick marks correspond to
frames, and purple ones are frames from which there are seamless backward arcs, i.e. arcs in which
the transition frames have low perceptual difference.

no motion near the poles, so we chose the view FOV to have higher granularity of coverage in the

horizontal direction than in the vertical direction. Thus, we set the horizontal FOV of each view to

match the horizontal FOV of the Oculus Rift headset and the vertical FOV to cover the video’s full

vertical height (w = 80.65◦, h = 180◦). The FOVs of adjacent views overlap by 71.65◦, with their

centers 9◦ apart. Additional views could easily be added to the discretization, or coverage areas

expanded as needed. See Discussion Section for more details on the trade-off between the number

of discrete views and the FOV size of each view.

4.4 Generating View-Dependent Textures

Given a user-specified gate and an existing video clip, we wish to generate a view-dependent texture

that satisfies the following properties: (1) The video proceeds past the gate timecode only if the

viewer satisfies the gate condition. (2) The gate timecode is reachable if the viewer is looking in a

direction that satisfies the gate condition (i.e., for lookat gates, in a direction where ROI is visible;

for offscreen gates, in a direction where ROI is not visible). (3) The transitions taken along arcs

minimize or eliminate ghosting. (4) All arcs satisfy user-set thresholds on the length of the arcs and

on the perceptual difference of arc transitions. In order to discourage repetitious or static loops, the

arc length threshold requires all backward arcs to be longer than a minimum threshold duration.

To minimize ghosting and visual artifacts, our tool allows authors to specify a perceptual threshold,

which is the highest perceptual difference of frames that arcs can have in order to be considered

CHAPTER 4. GATED CLIPS 40

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t

Figure 4.5: One naive solution is to find one loop (i.e., one backward transition arc) for each view
that does not satisfy the gate condition. In this example, the gate timecode is t = T , and the
view v = 2 satisfies the gate condition. All other views include one backward arc forming a loop.
The thick black line shows an example viewer’s head trajectory through the views over time (slowly
turning their head from v = 4 to v = 0). Unfortunately the viewer can still get past the gate time
through another view v �= 2 via certain head motions, so the naive solution does not provide a
guarantee that the gate condition is met before playback progresses.

seamless arcs.

Given these constraints, our goal is to specify the playback behavior for each combination of

frame t and discretized view direction v. There are only two possibilities from each (v, t): either

play forward to t + 1, or transition backward to some previous timecode t′ < t. Our algorithm

outputs the action (play forward to next frame or transition backward to an earlier frame) to take

from each (v, t). Then, during playback, our player looks up the run-time frame t and the nearest

discretized v, and follows the selected behavior at (v, t).

A naive solution is to create a separate video loop (i.e., one backward transition arc) for each view

direction, except for those that satisfy the gate condition. That is, for each view direction v ∈ V,
we could independently search for a backward arc (v, t, t′) that minimizes ghosting. Unfortunately,

this approach does not guarantee that the viewer satisfies the gate condition. As illustrated in

Figure 4.5, it is possible for viewers to move their heads in a way that allows them to pass the gate

timecode through a view that does not satisfy the gate condition. We also considered a version of

this approach which finds a single timecode t for all backward arcs (with independent destination

timecodes t′), but this approach similarly does not guarantee that viewers satisfy the gate condition.

If t is earlier than the gate timecode, viewers can still get past the gate timecode T through a view

that does not satisfy the gate condition (Figure 4.6). Requiring t to occur at the gate timecode is

too restrictive to work for general videos. For example, if a view (not satisfying the gate condition)

is static for all frames t < T , but an object in the view moved at t = T , then the view would not

have any seamless backward arcs originating at t = T , even though there are many pairs of frames

before T that can form seamless arcs.

CHAPTER 4. GATED CLIPS 41

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t

Figure 4.6: Another naive solution is to find one loop (i.e. one backward transition arc) for each view
that does not satisfy the gate condition, such that all the arcs originate at the same timecode. In this
example, the gate timecode is t = T , and the view v = 2 satisfies the gate condition. Unfortunately,
if the originating timecode for all arcs does not equal the gate timecode T , then the viewer can
still get past the gate time through a view v �= 2, as shown by the thick black line, which gives an
example of viewer’s head trajectory (slowly turning their head from v = 4 to v = 0) that gets past
the gate without satisfying the gate condition.

4.4.1 Graph Cut Formulation

We formulate the problem in terms of graph theory, specifically an s-t graph cut [47, 121, 23]. The

graph construction represents playback as a state machine, but with some modifications, so that a

minimal graph cut produces a solution to our problem of generating view-dependent video textures

for gated clips.

The graph includes one node (v, t) for each pair of view direction and frame in the clip, from the

start frame 0 to frame T + 1, which is the frame immediately after the gate timecode. Let v ∈ H
be the set of views that satisfy the gate condition. For lookat gates, H is the set of views in which

the ROI is visible; for offscreen gates, H is the set of views in which the ROI is not visible. We call

(v, T), where v ∈ H, gate nodes.

Graph Partition. Our goal is to partition the graph into two parts, a “safe zone,” which the

viewer must stay within before they satisfy the gate condition, and an “unsafe zone” that the viewer

must not visit before the gate condition is met. The safe zone must include all nodes at the starting

frame (v, 0) as well as the gate nodes, because the viewer can start in any view direction, and the

viewer must be able to visit the gate nodes in order to satisfy the gate condition. The unsafe zone

must include nodes (v, T +1) for all v, because viewers should not visit the frame immediately after

the gate timecode if the gate condition has not been satisfied. With this construction, the viewer

can exit the safe zone of the graph only by passing through a gate node. Otherwise, for boundary

nodes in the safe zone that border the unsafe zone, our graph cut algorithm finds seamless backward

arcs from which to transition back in time, so that the viewer does not enter the unsafe zone. If

the viewer is at a node in the unsafe zone before the gate condition is met, they might see ghosting

CHAPTER 4. GATED CLIPS 42

v

t t+1 t t+1

v

t B t+1
v-1

v+1

 Single Forward Edgea Multiple Forward Edgesb Using a Bu�er Nodec

∞w w w

Figure 4.7: (a) A single forward edge between consecutive nodes (v, t) → (v, t+1) represents normal
video playback of sequential frames but does not model head rotation. (b) Adding forward edges
to adjacent viewing directions models head rotation below some velocity—i.e. (v, t) → (v′, t + 1),
for all v′ ∈ N(v). But cutting these edges corresponds to disallowing some head motions, which we
cannot control. (c) A buffer node (v, t)B (cyan) creates one edge (black) that can be cut (to remove
the video frame advance for this view), while infinite-weight edges (cyan) cannot be cut (to properly
model free user head rotation). The edge weight w is designed to strongly prefer arcs with perceptual
error below the user-set threshold. More details of how w is determined is in the Appendix.

and/or pass through the gate timecode in a view v /∈ H.

Accounting for Head Motion. At any instant, the viewer may rotate their head. Hence,

from any node (v, t), the view direction at the next time instant may be from a neighbor set N(v),
determined as a function of the field of view, the view discretization, and how fast viewers typically

rotate their heads. Based on the work of Bussone [28], we assume a typical maximum head velocity

movement of 9.03 rad/s. For |V| = 40 and 30fps video, this means that viewers can move across

n = 2 adjacent views in either direction over the course of one frame interval, and therefore the

neighbor set N(v), of view v contains 5 views including v.

One might imagine representing sequential playback with allowance for head motion by including

an edge from each node (v, t) → (v′, t+1), for all v′ ∈ N(v). However, this approach would allow the

graph cut algorithm to cut some of these edges and not others, which would correspond to allowing

some head movements and not others. Since we cannot control the viewer’s head movements, we

cannot use such a representation. Hence, we introduce buffer nodes (v, t)B between consecutive

nodes (Figure 4.7). From each node (v, t), we insert an edge to its buffer node (v, t)B , and, from the

buffer node, we add edges to the subsequent nodes (v′, t+1) for v′ ∈ N(v). The edges (v, t) → (v, t)B

are called buffer edges.

Cutting a buffer edge indicates that, in the output video texture, the corresponding sequential

arc (v, t) → (v, t + 1) is omitted from the video texture, and that a backward arc must be taken

whenever (v, t) is reached.

Edge Weights. The weight of a buffer edge (v, t) → (v, t)B depends on the best backward arc

available from the node (v, t), since some backward arcs may introduce more ghosting than others.

The buffer edge weight is designed to strongly prefer arcs with perceptual error below the user-set

threshold. Details of how we determine buffer edge weights are given in the Appendix. Edges

CHAPTER 4. GATED CLIPS 43

t=0 t=1 t=T-1
v=0

v=1

v=2

v=3

...

...

...

...

t=T

...

t=T+1B B B

s t

∞

∞ ∞ ∞
∞

∞ ∞ ∞ 0

Figure 4.8: Our graph representation of a gated clip. The gate frame is t = T and the views that
satisfy the gate condition are H = {1, 2}. We add buffer nodes (cyan) between consecutive frame
nodes. There are infinite-weighted edges from each buffer node to possible views that viewers might
see at the next frame. In this figure, n = 1 for the number of adjacent views that viewers can visit
in one frame, but in our result videos we used n = 2. Buffer edges connect each frame node to its
buffer node. Buffer edges of {(v, t)|v ∈ H, t < T} have infinite weight, while buffer edges of gate
notes {(v, T)|v ∈ H} have a weight of 0. Source node s is connected to the starting frame nodes
t = 0 in each view, while terminal node t is connected to all nodes at t = T + 1. After performing
graph cut, the initial nodes and gate nodes (green) are partitioned from end nodes (red).

connecting buffer nodes to subsequent nodes (v, t)B → (v′, t + 1) for v′ ∈ N(v) represent the set of

views a viewer might transition into due to head movement. Since we cannot control viewer’s head

motion, these edges should not be cut, so we assign them a weight of infinity.

If the viewer is looking in a direction v ∈ H that satisfies the gate condition, they should be able

to reach the gate node (v, T). In other words, all nodes (v, t), where v ∈ H, t < T , should play

forward (i.e., not traverse backward arcs). Thus, the buffer edges of these nodes should not be cut,

so we set their weights to infinity.

The s-t graph cut formulation involves a source node s, which we connect with infinite-weight

edges to the nodes that must be in the safe zone, i.e., initial nodes (v, 0) for all view directions v ∈ V.
We do not explicitly connect s to gate nodes, because they are guaranteed to be partitioned into

the safe zone due to the infinite-weight buffer edges (v, t) → (v, t)B , v ∈ H, t < T . The sink node

t is connected with infinite-weight edges to all nodes (v, T + 1), which must be in the unsafe zone.

The complete gated clip graph is shown in Figure 4.8.

In order to perform the s-t graph cut, we need at least one buffer edge in each v ∈ H to have

non-infinite weight, so we set buffer edge weights of gate nodes (v, T) → (v, T)B to 0. Consequently,

edges (v, T) → (v, T)B are always cut for v ∈ H. Normally, cutting a buffer edge (v, t) → (v, t)B

indicates that a backward arc must be taken whenever (v, t) is reached. However, when the viewer

reaches one of the gate nodes (v, T), where (v, T) → (v, T)B is cut, we simply keep playing forward

to pass the gate, instead of taking a backward arc.

Properties of Cut. The graph-cut algorithm solves for the set of buffer edges to remove with

minimum total cost, such that the sink node t is not reachable from the source node s. This partition

corresponds to segmenting the graph into a safe zone, including the start nodes and the gate nodes,

and an unsafe zone, which include paths that violate the gate condition. Our implementation uses

CHAPTER 4. GATED CLIPS 44

v = 0

v = 1

v = 2

v = 3

v = 4

t = T

t

Figure 4.9: The graph cut algorithm may inadvertently create backward arcs (red arrows) into the
“unsafe zone” when there are discontiguous cuts along a viewing direction. Our post-processing step
replaces those backward arcs with new backward arcs (green arrows) that terminate in the “safe
zone.” The safe zone includes the both gray and purple shaded regions. However, since the purple
frames border the unsafe zone, it is possible for viewers to turn their head into the unsafe zone as
the player transitions into a purple frame, so our heuristic looks for replacement arcs that end in
the gray shaded area.

the min-cut solver of Boykov and Kolmogorov [23] and takes an average of 0.14 seconds to compute

the cut for the clips we have tested (Table 4.1).

4.4.2 Postprocessing

Once we run graph-cut on the graph, our video player extracts from the resulting partition a binary

decision for each node: whether to (1) play forward sequentially from that frame or to (2) take a

backward arc from that frame. If a buffer edge (v, t) → (v, t)B is not cut, the video player plays

forward sequentially from (v, t). As discussed in the Edge Weights section, the weight of a buffer

edge (v, t) → (v, t)B depends on the best backward arc available from the node (v, t). So if a buffer

edge (v, t) → (v, t)B is cut, then the video player traverses the best backward arc from (v, t).

It is possible for our graph cut algorithm to cut edges and produce backward arcs that end in the

unsafe zone, i.e., a node that the viewer is not meant to reach before satisfying the gate condition.

As shown in Figure 4.9, when there are discontiguous cuts along a viewing direction, it is possible

for some backward arcs in that view to end on a node which is partitioned into the unsafe zone. We

use the following heuristic post-process to correct these cases. We first identify the origin timecode

tC of the earliest backward arc along view direction v (tC = min{(v,t,t′)} t). We are guaranteed that

all nodes before this time are in the “safe zone.” Thus, we replace each backward arc (v, t, t′) that

ends after tC (t′ > tC), with the best backward arc from (v, t) that ends before tC . This approach

CHAPTER 4. GATED CLIPS 45

can produce video textures with some poor backward arcs; we highlight such poor backward arcs

in the user interface, and the user may perform further adjustments to generate better results, i.e.,

re-run the algorithm with different parameters (e.g., gate timecode, ROI, arc length) .

4.4.3 Forward Arcs to the Gate

Our graph-cut algorithm creates backward arcs in views that do not satisfy the gate condition, i.e.,

v ̸∈ H. If the viewer looks at a view v ∈ H, by default our player just plays normally until the

viewer reaches the gate timecode. However, this may take some time, and the filmmaker may want

the viewer to get to the gate timecode as soon as they look in the right direction. Thus, we provide

filmmakers with the option to add forward arcs to views v that satisfy the gate condition. The

forward arcs allow playback to jump directly to the gate when the viewer is in a view v ∈ H without

forcing them to wait for the remaining duration of the gated clip. If the author selects this option,

our system automatically adds forward arcs to all nodes (v, t), v ∈ H, t < T − 0.5 sec for which the

transition cost from (v, t) to (v, T −0.5 sec) is below a user-set perceptual threshold. We set forward

arcs to jump to 0.5 seconds before the gate timecode to allow the transition cross-dissolve to finish

by the time the viewer gets to the gate.

4.4.4 Alternative Q-Learning Approach

To avoid producing backward arcs that end in the unsafe zone (e.g., Figure 4.9), we present an

alternative approach to graph cut. In this case, the graph construction represents playback as a

state machine, and we use Q-learning [147] to find the best action to take from each state during

playback. While this Q-learning approach will find a set of backward arcs that end in the safe zone

(if such a set exists), it requires iterating until convergence and thus takes longer than the graph-cut

solution.

The graph includes one node (v, t) for each pair of view direction and timecode in the clip, from

the start timecode 1 to T +1, one frame after the gate timecode. Each node represents a state that

the viewer can be in during playback. Let v ∈ H be the set of views that satisfy the gate condition,

i.e., the ROI is visible or not visible, for lookat and offscreen gates, respectively.

At each state (node), our tool selects an action a ∈ A, where A is a set of all possible actions,

and transitions to a subsequent state (node). The set of possible actions includes jumping to a

previous frame or continuing to play forward (Figure 4.10). We denote the destination frame of the

action as ta, so if the current state (node) is (v, t), then ta ∈ [1...t− 1, t+1]. Our goal is to pass the

gate through one of the gate nodes (v, T), where v ∈ H, and avoid getting pass through one of the

non-gate nodes (v, T), where v /∈ H. Once we pass the gate and arrive at (v, T + 1), we no longer

want to jump back in time. Since we only build our nodes up to column f = T + 1, the only action

our tool takes from state (v, T + 1) is back to itself, i.e. ta = T + 1.

CHAPTER 4. GATED CLIPS 46

f = 0

v = 0

v = 1

v = 2

v = 3

f = T f = T+1

...

...

...

...

...

f = 1

Figure 4.10: Our graph representation of a gated clip. The gate frame is t = T and the views that
satisfy the gate condition are H = {1, 2}. In this figure, n = 1 for the number of adjacent views
that viewers can visit in one frame, but in our result videos we used n = 2. At any given node, our
tool takes an action to either go to a previous frame or to continue playing forward. In this figure,
the pink node is the current node, and each pink arc represents an action our tool can take from the
pink node. Due to head motion, the viewer might actually end up ±n views within the destination
view (highlighted in cyan).

At any instant, the viewer may rotate their head. Hence, we use a transition function to model

head motion. Given a state-action pair ((v, t), ta), where (v, t) is the current node and ta is desti-

nation frame, T (v, t, v′, ta) is the probability that the viewer reaches node (v′, ta) as the next state.

The transition from t to ta is deterministic (we guarantee a jump to frame ta). The resulting v′,

however, is not deterministic due to head motion. We assume a typical maximum head velocity

movement of 9.03 rad/s. For |V | = 40 and 30fps video, this means that viewers can move across

n = 2 adjacent views in either direction over the course of one frame, and there are 5 views in the

neighbor set N(v), including v. Thus, v′ ∈ N(v).

We assume that the viewer stays in the current view 80% of the time, and turns to another view

v′ ∈ N(v), v′ ̸= v, 20% of the time.

T (v, t, v′, ta) =

0.8, v′ = v

0.2

2n
, v′ ̸= v

0, otherwise

(4.1)

For each transition, we assign a reward value to encourage reaching gate nodes and discourage

reaching non-gate nodes. When the viewer is looking at a view that satisfies the gate condition, i.e.

nodes v ∈ H, we only want to play forward, so we assign −∞ to backward transitions from those

views. For backward transitions from other views, we assign a reward to prefer transitions with

perceptual error below a user set threshold.

CHAPTER 4. GATED CLIPS 47

R(v, t, v′, ta) =

0, if ta = t+ 1 and ta ̸= T + 1

0, t = ta = T + 1

100, v′ ∈ H, t = T, ta = T + 1

−∞, v′ /∈ H, t = T, ta = T + 1

−∞, v ∈ H, ta < t

0, if ta ≤ t−M and C(t, ta, v
′) < γ

−C(t, ta, v
′), otherwise

(4.2)

where M is the minimum loop length, and γ is the cost threshold, both defined by the user.

We then perform sample-based Q-learning on this model. Specifically, for each possible state-

action pair, we want to find the optimal Q∗((v, t), ta) value, which is the expected sum of rewards

for jumping to ta at node (v, t) and thereafter continuing to select jumps t∗a that maximize expected

rewards.

Q∗((v0, t0), ta0
) = E[

∞∑
i=0

βiR(vi, ti, vi+1, t
∗
ai
)|(v0,t0),ta0

...t∗ai−1
] (4.3)

where ti = tai−1
for i > 0 and β ∈ [0, 1] is the discount factor for future rewards. Recursively, Q∗ is

defined as:

Q∗((v, t), ta) =
∑
v′

T (v, t, v′, ta)[R(v, t, v′, ta) + βmax
t′a

Q∗((v′, ta), t
′
a)] (4.4)

We approximate Q∗((v, t), ta) through a series of iterative updates, which is guaranteed to con-

verge. At each iteration i, we compute Qi for all state-action pairs ((v, t), ta), which represents

the Q-value at depth i, i.e. the Q-value of ((v, t), ta) if we only take a total of i steps. Thus, we

iteratively update the Q-values of all state-action pairs with:

Qi((v, t), ta) = (1− α)Qi−1((v, t), ta) + α[R(v, t, v′, ta) + βmax
t′a

Qi−1((v
′, ta), t

′
a)] (4.5)

where α is the learning rate. We use α = 0.9 and β = 0.9. The subsequent state (v′, ta) from each

state-action pair is obtained by sampling T (v, t, v′, ta).

We keep updating the Q values until they converge, i.e. when |Qi+1 −Qi| < ϵ for some small ϵ.

Then, we extract the optimal policy π of actions to take at each node:

π(v, t) = argmax
ta

Q((v, t), ta) (4.6)

CHAPTER 4. GATED CLIPS 48

Invasion! Stranger Things

Wild Lions

Murder Mystery

Figure 4.11: Stills from our example videos. The first four were professionally-created videos, not
intended for use with gated clips. The fifth we shot for this project.

4.5 Example Videos

We used our editing tool to add gated clips to five 360◦ videos (Figure 4.11). We selected a range of

video genres and scenarios and varied our gate types to demonstrate a range of narrative use cases,

detailed in Table 4.1. We created four videos (Invasion!, Stranger Things, Wild, and Lions) based

on existing, professional videos, and shot the fifth video (Murder Mystery) ourselves. Note that the

professional videos were not shot with gating in mind; we added gating in order to demonstrate our

method. We cut each video down to one or two minutes in length. For each video we created three

gated clips and made sure to place the gate at important story events.

We authored audio manually for the gated clips. By default, we cross-dissolved the audio during

transitions, just as we cross-dissolved the video; we used this approach for “Stranger Things,”

“Wild,” and “Murder Mystery.” For “Lions,” the narrator sometimes speaks during a gated clip.

To avoid looping the narration, we played the audio normally (without transitions), separate from

the visual content which may be looping. If the gated clip audio ended before the viewer passed the

gate, we paused the audio until the viewer did, after which we resumed audio with the next clip.

For “Invasion!”, the original soundtrack includes music; we found that audio dissolves were jarring,

so we muted the audio entirely.

Invasion! [19]. We added lookat gates to focus the user’s attention at three key moments: the

rabbit’s entrance in the opening scene, the aliens’ comedic entrance from the spaceship, and the

aliens’ attempt to attack the rabbit. The lookat gates help pace the story as the viewer looks back

and forth between the rabbit and the aliens.

CHAPTER 4. GATED CLIPS 49

Video Genre
Length (sec), Type

1st 2nd 3rd

Invasion! Comedy 7 L 7 L 4 L
Lions Docu. 7 L 4 L 5 L
Stranger Things Horror 4 L 5 L 4 L
Wild Drama 10 L 3 L 7 O*
Murder Mystery Mystery 6 L* 4 O* 7 L*

Table 4.1: Summary of example videos. For each video, we added three gated clips. We show the
length (in seconds) and type of each gated clip. L: lookat gate, O: offscreen gate, *: enabled forward
arcs.

Stranger Things [100]. In this video, the viewer starts out in the living room. The camera then

automatically moves first towards the dining room, and then in an opposite direction down a hallway.

We used a lookat gate to ensure that viewers look at the dining room and down the hallway before

the camera starts moving, so that they are looking in the direction they move towards. Otherwise,

the unanticipated camera motion could be confusing and disorienting. We used a lookat gate to

ensure that the viewer turns around before the monster attacks the viewer.

Wild [44]. In this video, a hiker rests on a rock and sees the “ghost” of her mother, who appears

and disappears opposite the hiker. The viewer must look back and forth to see one and then the

other. We added two lookat gates; one for the hiker when the ghost appears, so that viewers see

the main character and do not witness the ghost’s appearance, and subsequently one for the ghost.

Finally, we added an offscreen gate with forward arcs, so the ghost immediately disappears when

the viewer looks away.

National Geographic Lions [99]. In this documentary, the narrator occasionally refers to

specific lions within a group, who each briefly become the main character. We added lookat gates

to wait for the viewer to look at the correct lion before allowing the narration for that lion to begin.

In addition, we added a lookat gate right before a lion attacked another lion, to ensure viewers see

this important action.

Murder Mystery. This video is similar to Wild, in that a ghost appears opposite from the

main character (with the viewer in-between the characters) and disappears when the character looks

away; however, there is more background motion which makes looping more difficult. We add a

lookat and an offscreen gate for the ghost’s appearance and disappearance, as well as another lookat

gate for the position where the ghost was standing, so the viewer sees that the ghost has vanished.

Our source code and the gated clip metadata used to produce these examples are available at

the project website: https://lseancs.github.io/viewdepvrtextures/

https://lseancs.github.io/viewdepvrtextures/

CHAPTER 4. GATED CLIPS 50

4.6 User Study

In order to understand the effects of gated clips, we asked viewers to watch the five videos described

in the previous section, and conducted a study to obtain qualitative feedback on their viewing

experience. While the videos we used include some passive gaze guidance cues, we did not explicitly

compare our method to passive (e.g., Nielsen et al. [102]) or active ([82, 57, 108]) gaze guidance

techniques, because our method is complementary to them. Our method guarantees viewers see the

ROI, whereas passive techniques do not. Active guidance techniques guarantee viewers see a ROI,

but they also limit viewer interaction and can reduce immersion, as Nielsen et al. observed, whereas

our method does not.

For the study, we used gated clips produced by an earlier version of our system, in which the

vertical FOV of each discretized view was equal to the Oculus Rift FOV (h = 96.02◦), instead of

the the full vertical range of h = 180◦. Using a vertical FOV smaller than the full height might

introduce visual artifacts if the viewer looks up or down beyond the view FOV. However, since there

was virtually no motion near the poles of these videos, the smaller vertical FOV was not a problem.

See Discussion Section for more details on choosing view discretization and FOV.

Each participant watched each of the five videos in one of two conditions: either a Gated version

or a Standard (non-looping) version; participants only saw one version of each video. The ordering

and condition were random. Each participant saw at least one video in each condition. They watched

videos on an Oculus Rift VR headset, while we recorded their head orientation data.

In pilot experiments, in an attempt to single-blind the study, we did not explain the two conditions

(Gated and Standard) to the participants. However, we found that because they did not understand

the conditions and how they were different, they could not specify which version they preferred.

Thus, in order to capture viewers’ preferences between Standard and Gated clips, in our main study

we informed participants as to which version of each video they were watching.

Before beginning the study, we explained to participants the two versions of videos they might

watch; “Standard” version for normal video playback, and “View-Dependent” (Gated) version in

which playback would wait for them if they were looking in the wrong direction when an important

story element occurs. Before showing each video, we only told participants whether the video was

“Standard” or “View-Dependent.”

After each video, participants removed the headset and took a break while filling out a question-

naire. We asked the participants to describe the story in their own words and to share feedback on

how natural they thought the video playback was.

After all 5 videos were shown, we asked participants to complete a survey comparing the Standard

and Gated versions on three 7-point Likert items: how easy it was to follow the stories, how stressful

it was to follow the stories, and how interested they were in the stories. At the end, the survey

included a binary-choice question asking which version they preferred overall and also included

free-response questions asking what they liked and disliked about each version.

CHAPTER 4. GATED CLIPS 51

Figure 4.12: User study scores comparing Standard and Gated clips in three categories: (1) how
easy it was to follow the story, (2) how stressful it was to follow the story (7 for least stressful),
and (3) how interested they were in the stories. Confidence intervals are computed as 2×Standard
Error. We found significant differences between the scores for “how easy” and “how stressfull”, as
indicated by the *’s, but not for “how interested”.

There were a total of 11 (5 female and 6 male) participants, with ages ranging from 24 to 36.

All participants had some level of prior VR experience, such as watching VR videos or playing VR

games. All except one participant watched all 5 videos; one participant preferred not to watch a VR

horror video (Stranger Things) but watched the other 4 videos. We instructed participants to stop

if they felt sick, but no participants reported sickness during the study.

4.6.1 Study Results

Overall Preference: Standard vs Gated Clips. Most participants (9 out of 11) preferred

the Gated videos over the Standard videos. Only one participant preferred the Standard version,

because they thought the Gated videos shown were slow (however, their complaints were largely

about the pacing in the Gated version of the Lions video). The other participant was ambivalent:

they preferred the Standard version if there were strong guidance cues on where to look, but if there

were no strong cues, and if the event triggered immediately after they looked at the right thing, they

preferred the Gated version.

How Easy, Stressful, Interesting? Participants scored the Standard and Gated versions in

three 7-point Likert items: how easy it was to follow the stories, how stressful it was to follow the

stories, and how interested they were in the stories (Figure 4.12). For each category, we performed

the Wilcoxon signed-rank test on each pair of answers (Standard and Gated) from the same person.

We applied continuity correction by adjusting the Wilcoxon rank statistic by 0.5 towards the mean

value when computing the z-statistic [70]. For “how easy,” there was significant preference for

the Gated version (p < 0.009, W = 1.5, r = 0.02). For “how stressful,” there was a significant

preference for Gated version being less stressful (p < 0.03, W = 5, r = 0.076). We found no

CHAPTER 4. GATED CLIPS 52

statistical significance in the “how interested” answers.

Standard vs Gated Clips: Likes and Dislikes. Most participants liked the Standard video

because it did not hold up the story and had better flow, but they did not like the fact that they

had to worry about missing important narrative elements. They liked the Gated video for being

able to explore scenes at their own pace without worrying they might miss something. One stated

reason for disliking the Gated version was having to look around and figure out what to look at to

trigger the next event. Some participants disliked the fact that sometimes looking at the right thing

did not immediately trigger the next story event. This happened occasionally when the clip they

watched did not have seamless forward jump arcs to take them to right before the gate time; in such

cases, they had to wait until the video played normally to the gate timecode.

How Natural was the Playback? Most participants interpreted the question “how natural

did the playback seem to you” broadly, answering in terms of how natural the story content was, how

natural it felt to have the interactive component in the story, or how natural the size of characters

in the stories appeared to them (e.g., the rabbit from Invasion! was larger than real-life rabbits).

Some participants were not accustomed to live-action videos waiting for them (e.g., the character

breathing and waiting), and so thought the interactive aspect was unnatural. Only one participant

noticed a ghosting artifact of two distant, moving pedestrians in the Murder Mystery video. In the

original video, the two pedestrians walk steadily away from the camera the entire clip (which does

not provide a view-dependent video texture an opportunity to loop), and in the postprocess stage,

our tool could not find good backward arcs that end before the earliest cut tC .

ROI Hit Rate for Standard Clips. In addition to the qualitative feedback, we also analyzed

the head orientation data of all participants. In Gated versions of videos, participants had to see the

ROI at the corresponding gate timecodes in order to proceed. We checked how often participants

who watched the Standard version missed the ROI at the same gate timecodes. Overall, only an

average of 61.9% of participants saw the ROI at the corresponding times (σ = 31.4%).

Time Elapsed for Gated Clips. We also looked at how long it took participants to pass a

gate, relative to the length of the gated clip without any looping. For Gated clips in which forward

arcs were not enabled, we found that participants took on average 2.25 times the original clip length

to pass the gate (σ = 1.77, average delay of 7.9s). For Gated clips in which forward arcs were

enabled, participants took 1.79 times the clip length to pass the gate (σ = 1.15, average delay of

4.7s). However, this varied considerably; for example, in the second gate of Murder Mystery, viewers

passed the gate faster with forward arcs than with the Standard version.

4.7 Discussion

User Study Conclusions. In our user study, most viewers reported they preferred Gated videos

over Standard ones. Overall, they find it easier and less stressful to follow stories in Gated than in

CHAPTER 4. GATED CLIPS 53

Standard videos. However, because participants were aware of which videos were produced by our

system, their feedback may be biased. The study indicated that a disadvantage for Gated videos

was the need to figure out where to look in order to pass a gate. Thus, we suggest filmmakers use

gaze guidance techniques in conjunction with our gating method, such as motion or lighting cues

[55], in order to direct viewers’ attention.

Design Choices for Gated Video. In order to produce video textures that create a good

experience, we recommend directors take the looping structure into account when creating gated

clips. In particular, directors should pay attention to structured (i.e., non-periodic, non-stochastic)

motion within the scene. Views that do not satisfy the gate condition need to be looped, so the

director should design the shot, e.g., shoot for a longer period, so that those views have some period

of time with no structured motion. For example, video of a car moving across one view cannot be

seamlessly looped, because no two frames have the car in the same position. However, if the director

films for a longer period of time and captures additional footage of the car moving out of the view,

or of the car coming to a stop within the view, then our method could find seamless loops using just

the frames after the car leaves, or of the car at rest.

Our method may loop structured motion spanning multiple views. For example, consider a car

moving from left to right across most of the scene. In a middle view between the starting and ending

views of the car our system might generate a backward arc transitioning from a frame after the car

leaves the view to a frame before the car enters the view. A viewer looking at this middle view

might then see the car pass through the scene repeatedly. If the car is in the background, it may be

fine for viewers to see the car loop in this manner. However, if the car is an important object that

the director wants viewers to see, then seeing the car repeat its motion could be confusing. Thus,

the director should choose the gate time and ROI carefully in such cases. For example, in the Patio

video from our supplemental material, a character stands on the right side of the scene, walks to the

left side, and stops. If the director places the ROI on the character after she comes to a stop, the

graph-cut algorithm produces arcs that loop the walk, which may not be desirable. If the director

instead places the gate ROI on the character before she starts walking, as shown in our supplemental

material, the director can prevent viewers from seeing the walk loop repeatedly.

Number of View Discretizations & View FOV. The director should consider the trade-offs

when choosing parameters for the number of view discretizations |V| and the FOV per view vi=1...|V|.

Recall that, during playback, our video player looks up the nearest discretized vi and follows the

arcs in vi. Thus, increasing |V| increases the chance that, at run-time, the actual viewer’s FOV will

completely overlap with a view vi, and thereby reduces the chance of seeing artifacts when following

arcs in vi. However, a larger number of views also increases computational cost.

Arc computations for each view only consider the pixels within the view FOV. Thus, a view

FOV that is smaller than the FOV of the head-mounted display (HMD) may introduce artifacts

during playback, since the HMD would show pixels that fall outside of the corresponding view FOV

CHAPTER 4. GATED CLIPS 54

when playing loops. A view FOV that is larger than the HMD FOV makes arc computations more

conservative and reduces the flexibility in finding seamless arcs, since it includes costs of pixels that

fall outside the HMD FOV which viewers actually see. In our examples, we used |V| = 40 and a

view FOV of (w = 80.65◦, h = 180◦), which we found to be a good trade-off.

4.8 Limitations and Future Work

Our algorithm does not account for audio when generating the view-dependent video textures. By

default, our tool simply cross-dissolves the audio during transitions; we have found that this approach

usually hides the seams in the loops well for ambient or environmental audio. For clips that have

structured audio, directors may need to handle the audio tracks separately when generating gated

clips. For example, music tracks could be looped independent of the video [119], whereas audio

cues must be carefully synced. Future work could explore ways of looping audio in conjunction with

the video.

While our algorithm can loop structured motion spanning multiple views, it may not be able to

find seamless loops for intra-view structured motion, i.e., structured motion contained within one

view. Future work could improve the applicability of our approach, by combining view-dependent

arcs with motion segmentation and/or using frame synthesis for better looping video generation.

For instance, if a view contains two people performing different repetitive actions, our method may

not be able to find a seamless loop, but segmentation approaches [120, 59] could segment the two

people and loop them separately. Frame synthesis could generate new frames to increase looping

flexibility within a view.

Gated clips open up a considerable design space for the filmmaker to work within when creating

their desired experience. For example, should the viewer be required to dwell on the ROI for the

gate to be passed? Should it be sufficient that the viewer has seen the ROI at some time in the

past? In theory, a gate could be used for every single important moment in the story, but such an

arrangement might introduce awkward pauses and disrupt the pacing of the story, so there is also a

space for determining where and how to place gates in a narrative. Future work could examine how

different types of gate conditions and combinations thereof help achieve a variety of narrative goals.

4.9 Chapter Summary

In this chapter, we focused on the task of manipulating time in 360◦ video and identified a set

of task-dependent realism constraints for this task. We showed that the important properties to

maintain (M) are within-view spatiotemporal coherency. We also showed that we can relax (R)

linear time and out-of-view spatiotemporal coherency to consider a larger space of visual content

and feasible transitions. Specifically, inspired by video textures, we demonstrated that we can play

CHAPTER 4. GATED CLIPS 55

frames out-of-order to indefinitely extend the video length while waiting for the gate condition to

be met. However, unlike conventional video textures, we can relax the criteria for finding frame

transitions by only requiring the transition to be imperceptible within the viewer’s field of view

during playback. The input parameters (I) for this task are the gate timecode, a region of interest

(ROI), and a viewing condition to pass the gate.

We then presented a new video player for authoring gated clips. Our tool applies the task-

dependent realism constraints M and R as the user manipulates I and produces realistic-looking

gated clips. We demonstrate use cases of our tool for various narrative goals, e.g. making sure

viewers see important story elements, or making sure viewers do not see something that is intended

to occur offscreen. We believe that gated clips enhance the ways in which filmmakers tell stories

and improve the viewing experience of 360◦ videos.

Chapter 5

Conclusion and Future Work

This thesis explored task-dependent realism with two manipulation tasks: 1) adjusting object size

and position in photographs, and 2) enforcing gated clips for 360◦ video. For each task, given

user-specified input parameters (I), this thesis identified explicit spatial and temporal constraints

to relax (R) and maintain (M), such that manipulating I would generate realistic-looking outputs.

While we focused on two specific tasks, this thesis shows the advantage of task-dependent realism at

a broader level – by explicitly identifying and applying realism constraints for a given task, we can

significantly increase the space of realistic-looking solutions and design tools which automatically

preserve important realism properties as the user explores edits.

A critical theme in this thesis is to develop a deep understanding of what assumptions and

constraints can be relaxed for a given manipulation task. Often times, these constraints are counter-

intuitive and challenge our assumptions about the world (e.g., curved light rays can produce plausibly

realistic images). However, by concentrating on a single task instead of multiple tasks, we are able to

deep dive into the problem and relax constraints to the maximum extent while ensuring the outputs

remain realistic. By doing so, we significantly increase the space of candidate solutions, which

then makes it easier to design an underlying representation for task manipulation. For example,

in ZoomShop, we devised a non-linear camera model to parameterize the space of edits. For gated

clips, we used a graph formulation to find a set of backward arcs to enforce gates. The advantage

of task-dependent realism lies in the increased space of feasible solutions, new representations to

explore the solution space, and the convenience of automatically preserving realism while editing.

We speculate that task-dependent realism offers an enhanced way to to edit visual media – by

applying task-dependent realism constraints, we free users from the burden of maintaining realism

and allow them to better focus on their authoring goals. Here, we identify a few directions of future

work.

56

CHAPTER 5. CONCLUSION AND FUTURE WORK 57

5.1 Identifying Constraints

In this thesis, we manually identified explicit constraints to relax and maintain for specific tasks.

However, manually finding these constraints can be time-consuming; it requires a deep understanding

of perceptual changes that the task creates and often involves trial-and-error. One direction of future

work is to systematically derive these constraints for a given task.

Extracting Constraints Future work could find general realism constraints from learned machine

learning models and use them as a starting point for curating task-specific realism constraints. Many

AI models, such as generative models, are trained on large amounts of real image data and have

implicitly learned what makes a photo real or fake. However, these“rules” for constructing a realistic

image are encoded as millions of model parameters and are not explicitly defined. Future work could

investigate ways to extract explicit realism constraints from these learned models and refine them

for specific manipulation tasks.

Refining Constraints To refine realism constraints for a given task, one approach is to randomly

select constraints to maintain and relax and check whether the result looks realistic. Future work

can explore various strategies for finding these constraints. For example, one can start off with

many constraints to maintain and test out various constraints to relax (R), or start off with very

few constraints to maintain (M) and progressively add more as necessary, or some combination of

both.

Evaluating Realism When curating task-dependent realism constraints, it is important to check

whether applying the selected constraints would lead to realistic results. Although we manually

inspected results in this work, future work can use data-driven techniques to speed up the process.

For example, one could use AI models to evaluate results by comparing them with the learned distri-

bution of realistic images. Alternatively, one could use crowd-sourcing to streamline the evaluation

process (e.g., Amazon Mechanical Turk).

Applying Constraints to Other Tasks In this work, we focused on one single task at a time

and identified task-specific realism constraints for each task. Another direction for future work is to

reverse the process; given task-dependent realism constraints for one task, what other tasks might

these constraints be useful for? For example, in ZoomShop, one of the relaxed constraints is that

light rays do not need to be straight to produce realistic images. It would be interesting to explore

how this insight may apply to other image editing tasks, such as re-lighting or re-coloring.

CHAPTER 5. CONCLUSION AND FUTURE WORK 58

5.2 Exploration of Edits

In this work, based on identified task-dependent realism constraints, we designed representations of

solution spaces such that it was easy to optimize for the specific tasks. For example, in ZoomShop,

we used a non-linear camera model to parameterize the 3D scene and smoothly vary changes in scale

across depth. For gated clips, we used a graph representation for ease of finding good backward

transitions. In these projects, while we used optimization techniques to find good results, we did

not explicitly design the representations such that the solutions changed in a predictable way as the

input parameters changed (e.g., direct manipulation). For example, when specifying parameters for

gated clips, there is no guarantee that tweaking the gate parameters would lead to a similar set of

backward arcs and transitions; the resulting arcs could be completely different.

Future work could investigate ways to design more intuitive representations or manifolds of the

solution space or better interfaces for navigating the solution space when exploring edits. One option

is direct manipulation interfaces, where there is a continuous representation between the input and

the output solution. Other possible enhancements include multi-modal interfaces (e.g., voice, text,

and haptic), which would support multiple ways of exploring the solution space.

In this work, we gave users the freedom to specify input parameters and explore edits at their

own pace. Future work could examine ways to provide additional guidance during the exploration

process. For example, future work could give real-time suggestions and feedback to users to help

them converge on a satisfactory solution more quickly. One approach is to use data-driven techniques

to learn about the user’s preferences based on their exploration history and make recommendations

derived from those insights. Other possibilities include crowd-sourcing ideas, suggesting templates,

and showing similar artistic examples.

5.3 Generating and Editing Synthetic Content

While this thesis focused on manipulation of real visual media, future work could explore ways to

extend task-dependent realism to the generation and manipulation of synthetic content. Today,

generative models [53, 63] are popular tools for creating synthetic images. While powerful, these

generative models tend to be more difficult to control than non-AI techniques. It would be interesting

to explore how task-dependent realism may help further enhance the capabilities of these models.

Generating Synthetic Content Currently, there are two main challenges in generating synthetic

content with AI models. One of them is providing sufficient user control (i.e., generating an output

which the user wants). Many models nowadays rely on prompt-based (text-based) interfaces, which

has a lot of room for interpretation. Given that models must then map these lower-dimensional

prompts to high-dimensional images, there is even more room for error, making it difficult for users

to get the output they want. The second challenge is producing realistic outputs; generative models

CHAPTER 5. CONCLUSION AND FUTURE WORK 59

are typically good at producing content that is similar to the distribution of data that they were

trained on. However, if the user prompts the model to generate an image that is out-of-distribution

of its training data, the model may generate a very unrealistic output (e.g., a cat with two heads

instead of two individual cats). As such, future work could explore how task-dependent realism may

play a role. By focusing on one specific task and identifying explicit realism constraints for that

task, one may be able to better train the models with those insights and input controls. This may

lead to more realistic results for that task as well as greater user control for that task.

Editing Synthetic Content After generating synthetic content, users may wish to edit some

aspects of it. The main challenge here is to perform the manipulation while preserving structure

and realism. Because of the under-constrained problem of mapping lower-dimensional input (e.g.,

text) to high-dimensional images, changing the input by a small amount may lead to very different

results. Many works [61, 29, 104, 106, 52] have taken steps towards this goal by manipulating

the latent representation of images. Again, future work could integrate task-dependent realism

constraints into these models to enhance their performance on specific tasks. Equipped with task-

dependent realism, one may be able to design task-specific models with greater user control that

maintains structure and realism as the user performs edits.

5.4 Visual Perception

The task-dependent realism constraints in this thesis reveal that there is quite an amount of “wiggle

room” for human visual perception; we can relax many constraints and assumptions and still produce

realistic results. One direction of future work is to use visual perception principles to systematically

guide the derivation of task-specific constraints. For example, instead of trial-and-error, perception

literature may offer guidance on an efficient strategy for selecting and testing out task-dependent

realism constraints.

Conversely, it would be interesting to explore how task-dependent realism could inform principles

in vision and perceptual science. For example, while artists and vision scientists have noticed that

linear perspective does not accurately capture human visual perception of a real scene, there is no

consensus on a model of visual perception. Perception scientists could perhaps use task-dependent

realism constraints from ZoomShop or use ZoomShop as an experimental tool for developing a more

comprehensive model of visual perception.

5.5 Non-Visual Domains

While this thesis focused on manipulating visual media, future work could extend task-dependent

realism to non-visual domains as well, such as audio or haptic media. Some works explore the

CHAPTER 5. CONCLUSION AND FUTURE WORK 60

perceptual limits of different domains, such as haptic illusions in virtual reality [1]. Future work can

apply these insights in determining realism constraints for specific tasks. In addition, future work

can investigate tasks that involve more than one type of domain (e.g., visual and non-visual) and

explore strategies for finding realism constraints with the additional dimensions.

Appendix A

ZoomShop

A.1 Geometric Description and Derivation of b(z)

Here, we show how our b(z) camera parameterization can be understood geometrically in terms of

non-linear camera models. We first show that a piecewise-linear, continuous choice of b(z) corre-

sponds to a sequence of linear camera models, each applied to different depth ranges, equivalent to

the Computational Zoom model proposed by Badki et al. [14]. We then describe generalizations to

non-linear and non-continuous b(z), and what these correspond to geometrically. For each type of

these b(z) (i.e., piecewise linear, curved, and discontinuous), we show that Equation A.1 holds:

u =
x

b(z)
(A.1)

Figure A.1 shows the boundary curve b(z) for linear perspective, piecewise linear, and curved

camera models.

A.1.1 Piecewise Linear Camera Model

We first explore a piecewise linear camera model. In this model, separate linear cameras are applied

to each depth range, with continuity constraints between the cameras. We show how the b(z)

formulation can be derived from this model. Note that this model is equivalent to Computational

Zoom [14], and this shows how Computational Zoom is a special case of our framework.

Figure A.1b shows a piecewise linear camera model. With the camera at the origin, and an

image plane at focal depth f = z0, we divide up the scene into a series of depth zones, bounded by

depth planes z1...zN , where zi < zi+1 for i ∈ [0...N − 1]. For each depth plane, the corresponding

half-plane width is Pi, which also marks the view boundary at zi.

Virtual Camera Positions. In the piecewise linear camera model, we can treat each individual

61

APPENDIX A. ZOOMSHOP 62

x

z
ZfarZnear

P

}

f

COP
p

(x, z)

Image
Plane

b(z)
Pnear

Pfar

(a) Linear Perspective Camera
Model. P is the half-width of
the image plane in world space.
Znear and Zfar are the z-values of
the near and far plane, and f is
the focal length of the camera.

x

z
z3=Zfar

COP

p0

(x, z)

z2
z1z0

Image
Plane

p
P0

P1
P2

Zone 3Zone 2Zone 1

P3b(z)

zc3

Znear

p1 p2

(b) Piecewise Linear Perspective
Camera Model. In this exam-
ple, the number of depth zones
N = 3. A scene point (x, z) gets
iteratively projected onto planes
P2, P1, and then P0 to form the
final image. Each depth zone
i obeys linear perspective, with
Pi−1 as the virtual image plane
and zci as the virtual camera.
zc3 is shown in yellow.

x

z
COP

p0
(x, z)

z0

Image
Plane

P0

Pnear b(z)

Znear Zfar

Pfar

pnear

(c) Curved Camera Model.
Parameterized by a boundary
curve b(z) for z ∈ [Znear, Zfar].
A scene point (x, z) is
projected onto the near
plane Pnear = b(Znear) at
(pnear, Znear), and then onto the
image plane at (p0, z0).

Original Linear Perspective Piecewise Linear Curved Paths

(d) Comparison of using different camera models, in a 3D scene inspired by Burleigh et al. [27]. In this
example, our aim is to scale up the bust while keeping the couches visible. Using linear perspective, the
only way is to zoom in crop, which cuts out part of the couch. Using the piecewise linear camera model, we
divide the scene into three zones (yellow, green, non-colored) and scale each zone separately. However, this
introduces a seam at the zone boundary between the non-colored and green zone (see red circles). Using
curved camera rays, we achieve a smoother transition of scale between zones and removes the seams (see
green circles). In the last two images, pixels that are not in the original photo are colored in cyan.

Figure A.1: Camera Models

APPENDIX A. ZOOMSHOP 63

depth zone i as a conventional linear perspective projection, with Pi−1 as the “image plane” of that

zone, and zci as the position of the virtual camera. See Figure A.1b for an illustration.

For each zone i, we can compute the virtual camera position zci by extrapolating where the

bounds of zone i will hit the z-axis. Take the example in Figure A.1b. The line connecting (z2, P2)

and (z3, P3) is defined by:

l(z) = P2 +
P3 − P2

z3 − z2
(z − z2) (A.2)

The line will intersect the z-axis at zc3 :

l(zc3) = P2 +
P3 − P2

z3 − z2
(zc3 − z2) =⇒ 0 (A.3)

zc3 = z2 −
P2(z3 − z2)

P3 − P2
(A.4)

In general, for any depth zone i, we can compute zci :

zci = zi−1 −
Pi−1(zi − zi−1)

Pi − Pi−1
(A.5)

To compute the final position of a scene point (x, z) on P0, we iteratively project (x, z) onto

intermediate “image planes” Pi−1, Pi−2, ..., until the final image plane P0.

Projection in Closed Form Solution The pseudo-code for projecting a point (x, z) iteratively

to Pi−1, Pi−2... until the image plane P0 is shown in Figure A.2.

In general, given any point (x, z) in depth zone i, we can figure out its projected point onto the

previous plane Pi−1 via px = f
z x. Offsetting f and z to be with respect to the virtual camera zci ,

the projected position (x′, z′) onto the previous plane Pi−1 is:

x′ =
zi−1 − zci

z − zci
x (A.6)

z′ = zi−1 (A.7)

We can convert the pseudo-code iterative projection to closed form. First, we substitute zci in

Equation A.6 (also line 9 of the pseudo-code) with Equation A.5:

APPENDIX A. ZOOMSHOP 64

x′ =
zi−1 − zci

z − zci
x (A.8)

=
zi−1 − (zi−1 − Pi−1(zi−zi−1)

Pi−Pi−1
)

z − (zi−1 − Pi−1(zi−zi−1)
Pi−Pi−1

)
x (A.9)

=

Pi−1(zi−zi−1)
Pi−Pi−1

z − zi−1 +
Pi−1(zi−zi−1)

Pi−Pi−1

x (A.10)

=
Pi−1(zi − zi−1)

(Pi − Pi−1)(z − zi−1) + Pi−1(zi − zi−1)
x (A.11)

=
Pi−1

z−zi−1

zi−zi−1
(Pi − Pi−1) + Pi−1

x (A.12)

=
Pi−1

z−zi−1

zi−zi−1
Pi + (1− z−zi−1

zi−zi−1
)Pi−1

x (A.13)

=
Pi−1

z−zi−1

zi−zi−1
Pi +

zi−z
zi−zi−1

Pi−1

x (A.14)

The denominator z−zi−1

zi−zi−1
Pi +

zi−z
zi−zi−1

Pi−1 is just a linear interpolation between the zone boundary

endpoints at Pi−1 and Pi. In fact, the denominator is equal to the boundary point b(z) at (x, z).

In other words, we can rewrite Equation A.14 and A.6 as:

x′ =
Pi−1

b(z)
x (A.15)

(x′, z′) is the projection of (x, z) to plane Pi−1. Following the pseudo-code, in the next iteration,

we project (x′, z′) to Pi−2. Let the projected point onto Pi−2 be (x′′, z′′). Then, using Equation

A.14:

x′′ =
Pi−2

b(z′)
x′ (A.16)

=
Pi−2

b(zi−1)
x′ (A.17)

=
Pi−2

Pi−1
x′ (A.18)

z′′ = zi−2 (A.19)

where b(zi−1) = Pi−1 because (x′, z′) is the projected point on plane Pi−1, and the boundary at

z′ = zi−1 is precisely Pi−1.

By the same logic, in subsequent iterations, when projecting (xj , zj) at plane Pj onto Pj−1, the

APPENDIX A. ZOOMSHOP 65

Figure A.2: Piecewise Linear: Pseudo-code for projecting a point (x, z) iteratively onto the image
plane P0.

scale factor for xj is
Pj−1

b(zj)
=

Pj−1

Pj
. Thus, the closed form solution for projecting (x, z) to the image

plane P0 is:

p0 =
P0

P1

P1

P2
...
Pi−2

Pi−1

Pi−1

b(z)
x (A.20)

=
P0

b(z)
x (A.21)

where p0 is the projected (world) coordinate of x onto image plane at z0.

The normalized image coordinates u0 ∈ [−1, 1] of the projection is:

u0 =
1

P0

P0

b(z)
x (A.22)

=
x

b(z)
(A.23)

where P0 is the half-width of the image plane in world space.

Another way to interpret this piecewise linear model is in terms of light paths. In a conventional

pinhole camera model, light follows a straight line from a scene point to the camera’s focal center

and intersects the image plane. In the piecewise linear model, a light path from a scene point follows

a sequence of straight lines, bending at each depth zone boundary (Figure A.1b).

This geometric interpretation of light paths can be extended to the other camera models as well.

For all camera models in our framework, the light paths follow the shape of b(z), i.e., for a scene

point at position (x0, y0, z0), the light path is a curve given by f(z) = (x0

b(z0)
b(z), y0

λb(z0)
b(z), z), where

λ = H/W is the image aspect ratio.

APPENDIX A. ZOOMSHOP 66

A.1.2 Curved Paths

We can generalize the piecewise linear model to a curved model (Figure A.1c). In this generalized

form, camera paths are no longer piecewise linear, but general curves: each light path is a scaled

version of b(z).

Equation A.1 still applies to the general view boundary curve. Instead of a finite number of

piecewise linear depth zones defined by a piecewise linear b(z), we now have a curved b(z), which is

equivalent to an infinite number of piecewise linear depth slices, where each slice is infinitesimally

thin.

In this curved model, the nearest depth plane (before the image plane) of the scene is Pnear =

b(Znear), as shown in Figure A.1c. Given any scene point (x, z), the projected point onto Pnear, is:

pnear =
Pnear

b(z)
x (A.24)

Next, the projection from (pnear, Znear) onto the image plane P0 is just conventional linear per-

spective:

p0 =
f

znear
pnear (A.25)

=
z0

znear
pnear (A.26)

=
z0

znear

Pnear

b(z)
x (A.27)

= (z0
Pnear

znear
)

x

b(z)
(A.28)

= P0
x

b(z)
(A.29)

where P0 is the half-width of the image plane in world space. We can convert p0 from world

coordinates to normalized image coordinates ux ∈ [−1, 1]:

ux =
p0
P0

(A.30)

=
x

b(z)
(A.31)

A.1.3 Discontinuous Paths

We can further generalize the continuous model to a discontinuous one. Figure A.3 shows a piecewise

discontinuous model, where camera paths follow discontinuous lines. We show that Equation A.1

APPENDIX A. ZOOMSHOP 67

z
zi+1zi

zi-1

Zone i+1Zone iZone i-1

b(z)

pi

...

...

pi-1

P-i

P+
i

P+
i-1P-

i-1

(x, z)

P-
i+1

Figure A.3: Illustration of discontinuous piecewise-linear camera paths. We break off each half-width
depth plane Pi into two parts, P−

i and P+
i . In this example, a discontinuity occurs at zi because

P−
i �= P+

i . b(z) is continuous at zi−1 because P−
i−1 = P+

i−1.

holds even if b(z) is discontinuous.

For piecewise discontinuous paths, we can define two half-widths P+
i , P−

i for each depth plane:

b(z) =
z − zi−1

zi − zi−1
P+
i +

zi − z

zi − zi−1
P−
i−1, where zi−1 ≤ z < zi (A.32)

When P+
i �= P−

i , a discontinuity occurs in the camera paths through this point. See Figure A.3 for

an illustration. We can imagine an infinitesimally thin depth zone at each zi, 1 ≤ i ≤ N , so:

p0 =
1

P+
0

....
P+
i−1

P−
i

P−
i

P+
i

P+
i

b(z)
x (A.33)

which converts to Equation A.1 in image coordinates.

A.2 Removing Artifacts

Scaling depth ranges can lead to disocclusions, pixel stretching, or shearing. For example, the teaser

figure shows both disoccluded regions (behind the left tree branch) and sheared pixels on the lake

in cyan between the yellow and green depth zones. Both of these issues introduce artifacts, which

we address with two heuristics.

In the first heuristic, we check the amount of shearing of each pixel in the final image. If a pixel is

significantly sheared, it most likely saddles between two different depths that were scaled differently.

This may lead to visible artifacts and/or disocclusion. To check for shearing, in the fragment shader,

we check the dot product between vectors d	u
dx =

[
du
dx

dv
dx

]T
and d	u

dy =
[
du
dy

dv
dy

]T
. If the vectors are

orthogonal, then there’s no shear. But if the dot product is greater than some threshold τshear, then

APPENDIX A. ZOOMSHOP 68

we make the pixel transparent:

du⃗

dx
· du⃗
dy

> τshear (A.34)

We use τshear = 0.53− 0.9 in our results.

In the second heuristic, we check for the amount of non-uniform scaling (stretching). A pixel

that’s stretched significantly in the x-direction, again, likely lies between two different depths that

were scaled differently, and thus introduces disocclusion or artifacts. To check for non-uniform

scaling, in the fragment shader, we compute the ratio of ||du⃗dx || and ||du⃗dy ||. A ratio of 1 means

uniform scaling; any deviation means the scaling is non-uniform. If the ratio is less than some

threshold τnonuniform, then we make the pixel transparent:

||du⃗dx ||
||du⃗dy ||

< τnonuniform (A.35)

We used τnonuniform = 0.2− 0.3 in our results, and also apply the same check for the y-direction,

i.e., ||du⃗dy ||/||
du⃗
dx ||.

A.3 Additional Translation Results

In Figure A.4, scaling up the birds pushed the left rock out of view. In addition to translation

constraints on the rock, we added an additional constraint on the float to keep it fixed in place.

The output shows the rock translated along with some connected water in front. In Figure A.5,

compressing the depth in the valley pushed the two side rocks partially out of view. Under the

shown constraints, ZoomShop smoothly translates the rocks towards the center as well some ground

in front.

APPENDIX A. ZOOMSHOP 69

da b c

Figure A.4: Birds. Goal: Scale up birds while also keeping the left side rock visible. Magenta and
blue rectangles are source-destination pairs which are input to our translation optimization. Each
pair of rectangles has the same size; magenta overlays blue rectangles. (a) Original photo. (b) Scaled
up birds. (c) ZoomShop output (top: translation map). (d) ZoomShop with inpainting (automatic).

da b c

Figure A.5: Yosemite [141]. Goal: Compress depth in valley while keeping two side rocks in view.
Magenta and blue rectangles are source-destination pairs which are input to our translation opti-
mization. (a) Original photo. (b) Compressed valley. (c) ZoomShop output (top: translation map).
(d) ZoomShop with inpainting (top: automatic, bottom: manual guidance)

Appendix B

Gated Clips

B.1 View-Dependent Arc Cost Computation

We now provide more detail into how arc costs are computed. Recall that an arc is a transition

between two frames (t, t′), and a view-dependent arc is a transition between two frames in a particular

view v, represented as a triplet (v, t, t′).

Our goal is to find arcs that transition seamlessly, so that viewers don’t notice the transitions

when they occur. In a pre-processing step, we assign costs to all possible view-dependent arcs (v, t, t′)

within a gated clip. The cost measures how seamless the arc transition is. As mentioned before, we

only consider the field of view that the viewer sees when computing view-dependent arcs. We first

discretize the view-sphere of all possible viewing directions into V views, and for each view, compute

the costs of all possible arcs within that view. Therefore, the total number of arcs is V ∗ f2, where

f is the number of frames in the gated clip.

B.1.1 View-Dependent Arc Cost Matrix

There are f2 total arcs in each viewing direction, where f is the number of frames in the gated clip.

We construct a cost matrix of size f × f that represents the arc cost between each pair of frames.

We define the cost of an arc between two frames for a given view as follows. Our goal is to

penalize visually-noticeable changes when cross-dissolving between the two frames, such as a person

appearing or disappearing, while ignoring minor changes due to pixel noise. We then apply a user-

defined threshold to determine if an arc is noticeable or not.

The cost for an arc from time i to time j in view direction k is a summation over every pixel

visible to the view, comparing the frames before and after the arc, summed over the duration N of

70

APPENDIX B. GATED CLIPS 71

the cross-dissolve:

C(vk, ti, tj) =
N∑

x=0

∑
ℓ∈pixels(k)

d(Iℓ,i+x, Iℓ,j+x) max(eℓ,i+x, eℓ,j+x) (B.1)

where Iℓ,i is the RGB value of pixel ℓ at time i, and eℓ,i ∈ [0, 1] is a binary edge map at pixel ℓ

at time i. The edge maps are computed by Canny edge detection with a 3 × 3 Sobel filter, and

min/max thresholds of 80 and 100 for the intensity gradient. The difference function ignores pixel

differences below a threshold τ :

d(a, b) =

||a− b||2, ||a− b||2 ≥ τ

0, otherwise
(B.2)

where a and b are 3-dimensional vectors that represent RGB values in the range [0..1]. We use

τ = 0.015 to 0.2, depending on how much high-frequency, stochastic motion there is in the clip. The

τ threshold prevents pixel changes due to stochastic motion, such as moving tree leaves, from overly

penalizing the arc. Empirically, we found that a clip with no trees in the foreground works well with

τ = 0.015, whereas a clip with large foreground trees moving in the wind requires a larger τ = 0.2.

For computational efficiency, we scaled our 360◦ videos in equirectangular format down to

640 × 320 before computing the cost matrices. We used a Summed Area Table [40] to accelerate

computation, since the summation otherwise would include considerable overlapping computations

for overlapping views. The Summed Area Table computation for a 7s 30fps clip takes about 3.3

hours to complete on a 3.1 GHz Intel Core i7 processor, in single-threaded unoptimized Python.

B.2 Buffer Edge Costs

We describe in more detail how buffer edge costs are assigned in our graph cut formulation. For

views in the direction of the gate (v ∈ H), we set the buffer edge weights to infinity for all timecodes

t ∈ 1 : T − 1.

For views v /∈ H, by default, we set the weight of the buffer edge from (v, t) to (v, t)B to the cost

of the best backward arc (lowest-cost) from this node, from among all backward arcs that satisfy

the user-specified minimum backward arc length. The user specifies a threshold γ for how large a

cost is perceptually acceptable. If a node (v, t) has a backward arc with C(v, t, t′) < γ, we call the

node a safe node; otherwise, we call it an unsafe node. With our view discretization and FOV, it is

possible that the viewer’s FOV may partially extend outside the FOV used to compute an arc cost,

so even though C(v, t, t′) may be less than γ, C(v + ϵ, t, t′) may not be and may have ghosting in

the periphery. Hence, we prefer taking arcs from nodes that are neighbored by safe nodes, in order

to decrease the likelihood of peripheral ghosting.

APPENDIX B. GATED CLIPS 72

Thus, to compute the buffer edge weight EB(v, t), we find contiguous blocks of safe nodes in each

viewing direction, i.e., each row of the graph (Figure 4.8), and add a small penalty to arcs of safe

nodes that are within K frames near the ends of the blocks, or do not fully overlap with any blocks

in adjacent views:

EB(v, t) =

∞, if v ∈ H

ω1(v, t) + ω2(v, t), if v /∈ H and (v, t) is safe

min
t′≤t−M

C(v, t, t′), if v /∈ H and (v, t) is unsafe

(B.3)

where M is the minimum loop length in number of frames. ω1 assigns a small penalty (between 0

and 2) based on how close the node is to the ends of the contiguous block as well as the block length,

and ω2 assigns a small penalty based on whether the block it is in has complete overlap with any

block in neighboring views. Let D(v, t) represent the contiguous block of safe nodes that node (v, t)

is in.

α = min(t−Dstart(v, t), Dend(v, t)− t) (B.4)

β = min

(
K,

Dlength(v, t)

2

)
(B.5)

ϕ =

1, if β =
Dlength(v, t)

2

0, otherwise

(B.6)

ω1(v, t) =

1− α

β
+ ϕ, α ≤ β

0, otherwise

(B.7)

ω2(v, t) = α
∑

v′∈N(v)

max
t′

δ(D(v, t) ⊆ D(v′, t′)) (B.8)

where δ is an indicator function that shows whether the frames of the first block is a subset of the

frames in the second block. α is the amount of penalty for each neighbor in which the block D(v, t)

is not a subset of. We used α = 0.1 and K = 15.

This heuristic reduces the chance of getting bad arcs in the post-process step, because it favors

cutting on sequential arcs in the contiguous blocks, as opposed to arcs of non-contiguous, isolated

safe nodes. For large contiguous blocks of safe nodes, it is likely that the frames have similar levels

of motion (e.g., static), so safe nodes in large contiguous blocks are more likely to have a good

backward arc that ends at or before the first safe node of that block.

Bibliography

[1] Parastoo Abtahi and Sean Follmer. Visuo-haptic illusions for improving the perceived perfor-

mance of shape displays. In Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems, CHI ’18, page 1–13, New York, NY, USA, 2018. Association for Comput-

ing Machinery.

[2] Adobe. Adobe photoshop, 2021.

[3] Adobe. Adobe premiere pro, 2021.

[4] Advanced Microcomputer Systems. Dragon’s lair. Cinematronics [Arcade version], 1983.

[5] Advanced Microcomputer Systems. Space ace. Cinematronics [Arcade version], 1984.

[6] Aseem Agarwala, Maneesh Agrawala, Michael Cohen, David Salesin, and Richard Szeliski.

Photographing long scenes with multi-viewpoint panoramas. In ACM SIGGRAPH 2006 Pa-

pers, pages 853–861. 2006.

[7] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian

Curless, David Salesin, and Michael Cohen. Interactive digital photomontage. In ACM SIG-

GRAPH 2004 Papers, pages 294–302. 2004.

[8] Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh Agrawala, Michael Cohen, Brian Cur-

less, David Salesin, and Richard Szeliski. Panoramic video textures. In ACM SIGGRAPH

2005 Papers, SIGGRAPH ’05, pages 821–827, New York, NY, USA, 2005. ACM.

[9] Maneesh Agrawala, Denis Zorin, and Tamara Munzner. Artistic multiprojection rendering. In

Eurographics Workshop on Rendering Techniques, pages 125–136. Springer, 2000.

[10] John M Airey, John H Rohlf, and Frederick P Brooks Jr. Towards image realism with inter-

active update rates in complex virtual building environments. ACM SIGGRAPH computer

graphics, 24(2):41–50, 1990.

73

BIBLIOGRAPHY 74

[11] Yuval Alaluf, Or Patashnik, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, and

Daniel Cohen-Or. Third time’s the charm? image and video editing with stylegan3. In

Computer Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings,

Part II, pages 204–220. Springer, 2023.

[12] Moab Arar, Dov Danon, Daniel Cohen-Or, and Ariel Shamir. Image resizing by reconstruction

from deep features. arXiv preprint arXiv:1904.08475, 2019.

[13] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. SIGGRAPH

’07, page 10–es, New York, NY, USA, 2007. Association for Computing Machinery.

[14] Abhishek Badki, Orazio Gallo, Jan Kautz, and Pradeep Sen. Computational zoom: A frame-

work for post-capture image composition. ACM Trans. Graph., 36(4), July 2017.

[15] Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and Ravi Ramamoorthi. Selectively de-

animating video. ACM Trans. Graph., 31(4):66:1–66:10, July 2012.

[16] Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and Ravi Ramamoorthi. Automatic cin-

emagraph portraits. pages 17–25, 2013.

[17] Reynold Bailey, Ann McNamara, Nisha Sudarsanam, and Cindy Grimm. Subtle gaze direction.

ACM Trans. Graph., 28(4):100:1–100:14, September 2009.

[18] Joseph Baldwin, Alistair Burleigh, and Robert Pepperell. Comparing artistic and geometrical

perspective depictions of space in the visual field. i-Perception, 5(6):536–547, 2014.

[19] Baobab Studios. Invasion!, 2016. https://www.baobabstudios.com/invasion.

[20] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patchmatch: A ran-

domized correspondence algorithm for structural image editing. ACM Trans. Graph., 28(3):24,

2009.

[21] Ronen Barzel and Alan H Barr. Physically-based modeling for computer graphics: a structured

approach. Morgan Kaufmann, 2013.

[22] Kadi Bouatouch and Christian Bouville. Photorealism in computer graphics. Springer Science

& Business Media, 2013.

[23] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell.,

26(9):1124–1137, September 2004.

[24] John Brosz, Sheelagh Carpendale, Faramarz Samavati, Hao Wang, and Alan Dunning. Art

and nonlinear projection. 01 2009.

https://www.baobabstudios.com/invasion

BIBLIOGRAPHY 75

[25] John Brosz, Faramarz F. Samavati, M. Sheelagh T. Carpendale, and Mario Costa Sousa.

Single camera flexible projection. In Proceedings of the 5th International Symposium on Non-

Photorealistic Animation and Rendering, NPAR ’07, page 33–42, New York, NY, USA, 2007.

Association for Computing Machinery.

[26] Gerd Bruder, Frank Steinicke, Phil Wieland, and Markus Lappe. Tuning self-motion percep-

tion in virtual reality with visual illusions. IEEE Transactions on Visualization and Computer

Graphics, 18(7):1068–1078, July 2012.

[27] Alistair Burleigh, Robert Pepperell, and Nicole Ruta. Natural perspective: Mapping visual

space with art and science. Vision, 2(2):21, 2018.

[28] William R. Bussone. Linear and angular head accelerations in daily life. Master’s thesis,

Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 7 2005.

[29] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng.

Masactrl: Tuning-free mutual self-attention control for consistent image synthesis and editing,

2023.

[30] Robert Carroll, Aseem Agarwala, and Maneesh Agrawala. Image warps for artistic perspective

manipulation. ACM Trans. Graph., 29(4), July 2010.

[31] Robert Carroll, Maneesh Agrawala, and Aseem Agarwala. Optimizing content-preserving

projections for wide-angle images. ACM Trans. Graph., 28(3), July 2009.

[32] Alan Chalmers and Andrej Ferko. Levels of realism: From virtual reality to real virtuality. In

Proceedings of the 24th Spring Conference on Computer Graphics, pages 19–25, 2008.

[33] Shenchang Eric Chen. Quicktime vr: An image-based approach to virtual environment navi-

gation. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’95, pages 29–38, New York, NY, USA, 1995. ACM.

[34] Stephen Chenney and David Forsyth. View-dependent culling of dynamic systems in virtual

environments. In Proceedings of the 1997 Symposium on Interactive 3D Graphics, I3D ’97,

pages 55–58, New York, NY, USA, 1997. ACM.

[35] Anton Cherepkov, Andrey Voynov, and Artem Babenko. Navigating the gan parameter space

for semantic image editing. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pages 3671–3680, 2021.

[36] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo.

Stargan: Unified generative adversarial networks for multi-domain image-to-image translation.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8789–

8797, 2018.

BIBLIOGRAPHY 76

[37] James H Clark. Hierarchical geometric models for visible surface algorithms. Communications

of the ACM, 19(10):547–554, 1976.

[38] Patrick Coleman and Karan Singh. Ryan: rendering your animation nonlinearly projected. In

Proceedings of the 3rd international symposium on Non-photorealistic animation and render-

ing, pages 129–156, 2004.

[39] J. P. Collomosse and P. M. Hall. Cubist style rendering from photographs. IEEE Transactions

on Visualization and Computer Graphics, 9(4):443–453, 2003.

[40] Franklin C. Crow. Summed-area tables for texture mapping. In Proceedings of the 11th Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’84, pages 207–

212, New York, NY, USA, 1984. ACM.

[41] Florin Cutzu, Riad Hammoud, and Alex Leykin. Estimating the photorealism of images:

Distinguishing paintings from photographs. In 2003 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2003. Proceedings., volume 2, pages II–305. IEEE,

2003.

[42] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and rendering of com-

plex water surfaces. In Proceedings of the 29th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’02, page 736–744, New York, NY, USA, 2002. Association

for Computing Machinery.

[43] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke. In Proceedings

of the 28th annual conference on Computer graphics and interactive techniques, pages 15–22,

2001.

[44] Felix & Paul Studios. Wild: The experience, 2015. https://www.felixandpaul.com/

?projects/wild.

[45] James A Ferwerda. Three varieties of realism in computer graphics. In Human vision and

electronic imaging viii, volume 5007, pages 290–297. SPIE, 2003.

[46] Matthew Flagg, Atsushi Nakazawa, Qiushuang Zhang, Sing Bing Kang, Young Kee Ryu, Irfan

Essa, and James M. Rehg. Human video textures. In Proceedings of the 2009 Symposium

on Interactive 3D Graphics and Games, I3D ’09, pages 199–206, New York, NY, USA, 2009.

ACM.

[47] Lester Randolph Ford Jr. and Delbert Ray Fulkerson. Flows in networks. RAND Corporation,

Santa Monica, CA, August 1962. Report number R-375-PR.

https://www.felixandpaul.com/?projects/wild
https://www.felixandpaul.com/?projects/wild

BIBLIOGRAPHY 77

[48] Elodie Fourquet. Composition in perspectives. In Proceedings of the Fourth Eurographics

conference on Computational Aesthetics in Graphics, Visualization and Imaging, pages 9–16,

2008.

[49] Ohad Fried, Eli Shechtman, Dan B Goldman, and Adam Finkelstein. Perspective-aware ma-

nipulation of portrait photos. ACM Transactions on Graphics (TOG), 35(4):1–10, 2016.

[50] Ohad Fried, Ayush Tewari, Michael Zollhöfer, Adam Finkelstein, Eli Shechtman, Dan B Gold-

man, Kyle Genova, Zeyu Jin, Christian Theobalt, and Maneesh Agrawala. Text-based editing

of talking-head video. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019.

[51] Raghudeep Gadde, Qianli Feng, and Aleix M Martinez. Detail me more: Improving gan’s

photo-realism of complex scenes. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 13950–13959, 2021.

[52] Songwei Ge, Taesung Park, Jun-Yan Zhu, and Jia-Bin Huang. Expressive text-to-image gen-

eration with rich text, 2023.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Commun.

ACM, 63(11):139–144, oct 2020.

[54] Google ATAP. Google spotlight stores, 2019. https://atap.google.com/

spotlight-stories/.

[55] Steve Grogorick, Georgia Albuquerque, and Marcus A. Magnor. Comparing unobtrusive gaze

guiding stimuli in head-mounted displays. In 2018 IEEE International Conference on Image

Processing, ICIP 2018, Athens, Greece, October 7-10, 2018, pages 2805–2809, Athens, Greece,

2018. IEEE.

[56] Steve Grogorick, Michael Stengel, Elmar Eisemann, and Marcus Magnor. Subtle gaze guidance

for immersive environments. In Proceedings of the ACM Symposium on Applied Perception,

SAP ’17, pages 4:1–4:7, New York, NY, USA, 2017. ACM.

[57] Jan Gugenheimer, Dennis Wolf, Gabriel Haas, Sebastian Krebs, and Enrico Rukzio. A demon-

stration of swivrchair: A motorized swivel chair to nudge users’ orientation for 360 degree

storytelling in virtual reality. In Proceedings of the 2016 ACM International Joint Conference

on Pervasive and Ubiquitous Computing: Adjunct, UbiComp ’16, pages 281–284, New York,

NY, USA, 2016. ACM.

[58] Hajime Hata, Hideki Koike, and Yoichi Sato. Visual guidance with unnoticed blur effect. In

Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI ’16,

pages 28–35, New York, NY, USA, 2016. ACM.

https://atap.google.com/spotlight-stories/
https://atap.google.com/spotlight-stories/

BIBLIOGRAPHY 78

[59] Mingming He, Jing Liao, Pedro V. Sander, and Hugues Hoppe. Gigapixel panorama video

loops. ACM Trans. Graph., 37(1):3:1–3:15, November 2017.

[60] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, and Xilin Chen. Attgan: Facial

attribute editing by only changing what you want. IEEE transactions on image processing,

28(11):5464–5478, 2019.

[61] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.

Prompt-to-prompt image editing with cross attention control, 2022.

[62] Darragh Higgins, Donal Egan, Rebecca Fribourg, Benjamin Cowan, and Rachel McDonnell.

Ascending from the valley: Can state-of-the-art photorealism avoid the uncanny? In ACM

symposium on applied perception 2021, pages 1–5, 2021.

[63] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

[64] hreniuca. Bride and groom embracing in paris. https://stock.adobe.com/images/

bride-and-groom-embracing-in-paris/81288729.

[65] Shi-Min Hu, Fang-Lue Zhang, MiaoWang, Ralph RMartin, and JueWang. Patchnet: A patch-

based image representation for interactive library-driven image editing. ACM Transactions on

Graphics (TOG), 32(6):1–12, 2013.

[66] Corneliu Ilisescu, Halil Aytac Kanaci, Matteo Romagnoli, Neill D. F. Campbell, and Gabriel J.

Brostow. Responsive action-based video synthesis. In Proceedings of the 2017 CHI Conference

on Human Factors in Computing Systems, CHI ’17, pages 6569–6580, New York, NY, USA,

2017. ACM.

[67] Ingusk. Young girl standing by the tian tan buddha, big

buddha in hong kong. https://stock.adobe.com/images/

young-girl-standing-by-the-tian-tan-buddha-big-buddha-in-hong-kong/189942971.

[68] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1125–1134, 2017.

[69] Varun Jampani, Huiwen Chang, Kyle Sargent, Abhishek Kar, Richard Tucker, Michael

Krainin, Dominik Kaeser, William T. Freeman, David Salesin, Brian Curless, and Ce Liu. Slide:

Single image 3d photography with soft layering and depth-aware inpainting. In Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 12518–12527,

October 2021.

[70] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for

Python, 2001–.

https://stock.adobe.com/images/bride-and-groom-embracing-in-paris/81288729
https://stock.adobe.com/images/bride-and-groom-embracing-in-paris/81288729
https://stock.adobe.com/images/young-girl-standing-by-the-tian-tan-buddha-big-buddha-in-hong-kong/189942971
https://stock.adobe.com/images/young-girl-standing-by-the-tian-tan-buddha-big-buddha-in-hong-kong/189942971

BIBLIOGRAPHY 79

[71] Neel Joshi, Sisil Mehta, Steven Drucker, Eric Stollnitz, Hugues Hoppe, Matt Uyttendaele,

and Michael Cohen. Cliplets: Juxtaposing still and dynamic imagery. In Proceedings of the

25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12, pages

251–260, New York, NY, USA, 2012. ACM.

[72] Hyunyoung Jung, Eunhyeok Park, and Sungjoo Yoo. Fine-grained semantics-aware repre-

sentation enhancement for self-supervised monocular depth estimation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), pages 12642–12652, Oc-

tober 2021.

[73] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer graphics. In

Proceedings of the 17th annual conference on Computer graphics and interactive techniques,

pages 49–57, 1990.

[74] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias Niessner,

Patrick Pérez, Christian Richardt, Michael Zollhöfer, and Christian Theobalt. Deep video

portraits. ACM Transactions on Graphics (TOG), 37(4):1–14, 2018.

[75] Jan Koenderink, Andrea Doorn, Robert Pepperell, and Baingio Pinna. On right and wrong

drawings. Art & Perception, 4:1–38, 02 2016.

[76] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean Quigley, Francis Ge, Yangming Chong,

Josh Patterson, Jan-Michael Frahm, Shu Wu, Matthew Yu, Peizhao Zhang, Zijian He, Peter

Vajda, Ayush Saraf, and Michael Cohen. One shot 3d photography. 39(4), 2020.

[77] Jed Lengyel. The convergence of graphics and vision. Computer, 31(7):46–53, 1998.

[78] Philippe Levieux, James Tompkin, and Jan Kautz. Interactive viewpoint video textures. In

Proceedings of the 9th European Conference on Visual Media Production, CVMP ’12, pages

11–17, New York, NY, USA, 2012. ACM.

[79] Shuai Li, Jiaying Shi, Wenfeng Song, Aimin Hao, and Hong Qin. Hierarchical object relation-

ship constrained monocular depth estimation. Pattern Recognition, 120:108116, 2021.

[80] Jing Liao, Mark Finch, and Hugues Hoppe. Fast computation of seamless video loops. ACM

Trans. Graph., 34(6):197:1–197:10, October 2015.

[81] Zicheng Liao, Neel Joshi, and Hugues Hoppe. Automated video looping with progressive

dynamism. ACM Trans. Graph., 32(4):77:1–77:10, July 2013.

[82] Yen-Chen Lin, Yung-Ju Chang, Hou-Ning Hu, Hsien-Tzu Cheng, Chi-Wen Huang, and Min

Sun. Tell me where to look: Investigating ways for assisting focus in 360◦ video. In Proceedings

of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 2535–

2545, New York, NY, USA, 2017. ACM.

BIBLIOGRAPHY 80

[83] Yung-Ta Lin, Yi-Chi Liao, Shan-Yuan Teng, Yi-Ju Chung, Liwei Chan, and Bing-Yu Chen.

Outside-in: Visualizing out-of-sight regions-of-interest in a 360◦ video using spatial picture-

in-picture previews. In Proceedings of the 30th Annual ACM Symposium on User Interface

Software and Technology, UIST ’17, pages 255–265, New York, NY, USA, 2017. ACM.

[84] Andrew Lippman. Movie-maps: An application of the optical videodisc to computer graphics.

SIGGRAPH Comput. Graph., 14(3):32–42, July 1980.

[85] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catan-

zaro. Image inpainting for irregular holes using partial convolutions. In Proc. ECCV, 2018.

[86] Hongyu Liu, Ziyu Wan, Wei Huang, Yibing Song, Xintong Han, and Jing Liao. Pd-gan:

Probabilistic diverse gan for image inpainting. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 9371–9381, June 2021.

[87] Sean J. Liu, Maneesh Agrawala, Stephen DiVerdi, and Aaron Hertzmann. View-dependent

video textures for 360◦ video. In Proceedings of the 32nd Annual ACM Symposium on User

Interface Software and Technology, UIST ’19. ACM, 2019.

[88] Sean J. Liu, Maneesh Agrawala, Stephen DiVerdi, and Aaron Hertzmann. ZoomShop: Depth-

Aware Editing of Photographic Composition. Computer Graphics Forum, 2022.

[89] CH Lo and Alan Chalmers. Stereo vision for computer graphics: the effect that stereo vision

has on human judgments of visual realism. In Proceedings of the 19th spring conference on

Computer graphics, pages 109–117, 2003.

[90] Helwig Löffelmann and Eduard Gröller. Ray tracing with extended cameras. The Journal of

Visualization and Computer Animation, 7(4):211–227, 1996.

[91] Xin Ma, Xiaoqiang Zhou, Huaibo Huang, Zhenhua Chai, Xiaolin Wei, and Ran He. Free-form

image inpainting via contrastive attention network. In 2020 25th International Conference on

Pattern Recognition (ICPR), pages 9242–9249. IEEE, 2021.

[92] Will Marlow. View from the top of the notre dame in paris, July 2012. https://www.flickr.

com/photos/williammarlow/7643827866. Original photo licensed under CC BY-NC-SA 2.0.

[93] Brian Matiash. Add impact to your photos with free trans-

form in adobe photoshop, 2021. https://petapixel.com/2021/04/12/

add-impact-to-your-photos-with-free-transform-in-adobe-photoshop/.

[94] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano

Ermon. Sdedit: Guided image synthesis and editing with stochastic differential equations. In

International Conference on Learning Representations, 2021.

https://www.flickr.com/photos/williammarlow/7643827866
https://www.flickr.com/photos/williammarlow/7643827866
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://petapixel.com/2021/04/12/add-impact-to-your-photos-with-free-transform-in-adobe-photoshop/
https://petapixel.com/2021/04/12/add-impact-to-your-photos-with-free-transform-in-adobe-photoshop/

BIBLIOGRAPHY 81

[95] S. Mahdi H. Miangoleh, Sebastian Dille, Long Mai, Sylvain Paris, and Yagiz Aksoy. Boosting

monocular depth estimation models to high-resolution via content-adaptive multi-resolution

merging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 9685–9694, June 2021.

[96] Mistervlad. Apollo fountain in versailles gardens, paris, france. https://stock.adobe.com/

images/apollo-fountain-in-versailles-gardens-paris-france/214090987.

[97] Vaidotas Mǐseikis. Faro de formentor, July 2011. https://www.flickr.com/photos/v4idas/

6385364319. Original photo licensed under CC BY-NC-ND 2.0.

[98] Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav Acha, Yossi Matias, Yael Pritch, Yaniv

Leviathan, and Yedid Hoshen. Dreamix: Video diffusion models are general video editors.

arXiv preprint arXiv:2302.01329, 2023.

[99] National Geographic. Lions 360◦, 2017. https://www.youtube.com/watch?v=sPyAQQklc1s.

[100] Netflix. Stranger things: Virtual reality / 360 experience, 2016. https://www.youtube.com/

watch?v=yg29RvYNSDQ.

[101] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically based modeling

and animation of fire. In Proceedings of the 29th annual conference on Computer graphics and

interactive techniques, pages 721–728, 2002.

[102] Lasse T. Nielsen, Matias B. Møller, Sune D. Hartmeyer, Troels C. M. Ljung, Niels C. Nilsson,

Rolf Nordahl, and Stefania Serafin. Missing the point: An exploration of how to guide users’

attention during cinematic virtual reality. In Proceedings of the 22nd ACM Conference on

Virtual Reality Software and Technology, VRST ’16, pages 229–232, New York, NY, USA,

2016. ACM.

[103] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d ken burns effect from a single image.

ACM Transactions on Graphics (TOG), 38(6):1–15, 2019.

[104] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, and Christian

Theobalt. Drag your gan: Interactive point-based manipulation on the generative image

manifold, 2023.

[105] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei Efros, and

Richard Zhang. Swapping autoencoder for deep image manipulation. Advances in Neural

Information Processing Systems, 33:7198–7211, 2020.

[106] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan

Zhu. Zero-shot image-to-image translation, 2023.

https://stock.adobe.com/images/apollo-fountain-in-versailles-gardens-paris-france/214090987
https://stock.adobe.com/images/apollo-fountain-in-versailles-gardens-paris-france/214090987
https://www.flickr.com/photos/v4idas/6385364319
https://www.flickr.com/photos/v4idas/6385364319
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.youtube.com/watch?v=sPyAQQklc1s
https://www.youtube.com/watch?v=yg29RvYNSDQ
https://www.youtube.com/watch?v=yg29RvYNSDQ

BIBLIOGRAPHY 82

[107] Peter J. Passmore, Maxine Glancy, Adam Philpot, Amelia Roscoe, Andrew Wood, and Bob

Fields. Effects of viewing condition on user experience of panoramic video. In Proceedings

of the 26th International Conference on Artificial Reality and Telexistence and the 21st Euro-

graphics Symposium on Virtual Environments, ICAT-EGVE ’16, pages 9–16, Goslar Germany,

Germany, 2016. Eurographics Association.

[108] Amy Pavel, Björn Hartmann, and Maneesh Agrawala. Shot orientation controls for interactive

cinematography with 360 video. In Proceedings of the 30th Annual ACM Symposium on User

Interface Software and Technology, UIST ’17, pages 289–297, New York, NY, USA, 2017.

ACM.

[109] Guim Perarnau, Joost Van De Weijer, Bogdan Raducanu, and Jose M Álvarez. Invertible

conditional gans for image editing. arXiv preprint arXiv:1611.06355, 2016.

[110] Yael Pritch, Eitam Kav-Venaki, and Shmuel Peleg. Shift-map image editing. In 2009 IEEE

12th international conference on computer vision, pages 151–158. IEEE, 2009.

[111] Ed Quigley, Yue Yu, Jingwei Huang, Winnie Lin, and Ronald Fedkiw. Real-time interactive

tree animation. IEEE transactions on visualization and computer graphics, 24(5):1717–1727,

2017.

[112] Paul Rademacher, Jed Lengyel, Edward Cutrell, and Turner Whitted. Measuring the percep-

tion of visual realism in images. In Rendering Techniques 2001: Proceedings of the Eurographics

Workshop in London, United Kingdom, June 25–27, 2001 12, pages 235–247. Springer, 2001.

[113] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards

robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.

[114] Boris V Rauschenbach. Perceptual perspective and cezanne’s landscapes. Leonardo, 15(1):28–

33, 1982.

[115] Erik Reinhard, Alexei A Efros, Jan Kautz, and Hans-Peter Seidel. On visual realism of

synthesized imagery. Proceedings of the IEEE, 101(9):1998–2007, 2013.

[116] Stephan R Richter, Hassan Abu AlHaija, and Vladlen Koltun. Enhancing photorealism en-

hancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):1700–

1715, 2022.

[117] Rocksteady Studios. Batman: Arkham vr, 2016. http://rocksteadyltd.com/#arkham-vr.

[118] Christoph Alexander Rosenberg. Over there! visual guidance in 360-degree videos and other

virtual environments. Master’s thesis, Universität des Saarlandes, September 2017.

http://rocksteadyltd.com/#arkham-vr

BIBLIOGRAPHY 83

[119] Steve Rubin and Maneesh Agrawala. Generating emotionally relevant musical scores for audio

stories. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and

Technology, UIST ’14, pages 439–448, New York, NY, USA, 2014. ACM.

[120] Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan Essa. Video textures. In Proceedings

of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

’00, pages 489–498, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[121] Robert Sedgewick. Algorithms in C++ Part 5: Graph Algorithms (3rd Edition). Addison-

Wesley Professional, Reading, Massachusetts, August 2001.

[122] Vidya Setlur, Saeko Takagi, Ramesh Raskar, Michael Gleicher, and Bruce Gooch. Automatic

image retargeting. In Proceedings of the 4th international conference on Mobile and ubiquitous

multimedia, pages 59–68, 2005.

[123] Jun’ichiro Seyama and Ruth S Nagayama. The uncanny valley: Effect of realism on the

impression of artificial human faces. Presence, 16(4):337–351, 2007.

[124] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model

from a single natural image, 2019.

[125] Thomas K Sharpless, Bruno Postle, and Daniel M German. Pannini: A new projection for

renderingwide angle perspective images. In Computational Aesthetics, pages 9–16, 2010.

[126] Alia Sheikh, Andy Brown, Zillah Watson, and Michael Evans. Directing attention in 360-

degree video. In IBC 2016 Conference, pages 29–37, Amsterdam, Netherlands, September

2016. IBC.

[127] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3d photography using

context-aware layered depth inpainting. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2020.

[128] YiChang Shih, Wei-Sheng Lai, and Chia-Kai Liang. Distortion-free wide-angle portraits on

camera phones. ACM Trans. Graph., 38(4), July 2019.

[129] Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. Summarizing visual data

using bidirectional similarity. In 2008 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8. IEEE, 2008.

[130] Karan Singh. A fresh perspective. In Graphics interface, volume 2002, pages 17–24. Citeseer,

2002.

[131] Travis Stebbins and Eric D. Ragan. Redirecting view rotation in immersive movies with

washout filters. In Proceedings of the IEEE Virtual Reality, Osaka, Japan, 2019. IEEE.

BIBLIOGRAPHY 84

[132] Sara L Su, Frédo Durand, and Maneesh Agrawala. De-emphasis of distracting image regions

using texture power maps. 2005.

[133] Zhaolin Su and Shigeo Takahashi. Real-time enhancement of image and video saliency us-

ing semantic depth of field. In International Conference on Computer Vision Theory and

Applications (VISAPP) (2), pages 370–375, Angers, France, 2010. INSTICC.

[134] Bongwon Suh, Haibin Ling, Benjamin B Bederson, and David W Jacobs. Automatic thumbnail

cropping and its effectiveness. In Proceedings of the 16th annual ACM symposium on User

interface software and technology, pages 95–104, 2003.

[135] Maitreya Suin, Kuldeep Purohit, and A. N. Rajagopalan. Distillation-guided image inpainting.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages

2481–2490, October 2021.

[136] Pedro Szekely. Monument valley, August 2014. https://www.flickr.com/photos/pedrosz/

35250460535. Modified from original and used under CC BY-SA 2.0. Derivatives are licensed

under CC BY-SA 4.0.

[137] Pedro Szekely. Venice, italy, October 2014. https://www.flickr.com/photos/pedrosz/

38269434695. Modified from original and used under CC BY-SA 2.0. Derivatives are licensed

under CC BY-SA 4.0.

[138] Christopher C Tanner, Christopher J Migdal, and Michael T Jones. The clipmap: a virtual

mipmap. In Proceedings of the 25th annual conference on Computer graphics and interactive

techniques, pages 151–158, 1998.

[139] Bernd Thaller. Lake bohinj, August 2016. https://www.flickr.com/photos/bernd_

thaller/30816367150. Modified from original and used under CC BY 2.0.

[140] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an

encoder for stylegan image manipulation. ACM Transactions on Graphics (TOG), 40(4):1–14,

2021.

[141] Wade Tregaskis. Yosemite valley, February 2020. https://www.flickr.com/photos/

wadetregaskis/50156486633. Original photo licensed under CC BY-NC 2.0.

[142] Marc Van den Broeck, Fahim Kawsar, and Johannes Schöning. It’s all around you: Exploring

360◦ video viewing experiences on mobile devices. In Proceedings of the 25th ACM Interna-

tional Conference on Multimedia, MM ’17, pages 762–768, New York, NY, USA, 2017. ACM.

[143] Eduardo E. Veas, Erick Mendez, Steven K. Feiner, and Dieter Schmalstieg. Directing atten-

tion and influencing memory with visual saliency modulation. In Proceedings of the SIGCHI

https://www.flickr.com/photos/pedrosz/35250460535
https://www.flickr.com/photos/pedrosz/35250460535
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.flickr.com/photos/pedrosz/38269434695
https://www.flickr.com/photos/pedrosz/38269434695
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.flickr.com/photos/bernd_thaller/30816367150
https://www.flickr.com/photos/bernd_thaller/30816367150
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/wadetregaskis/50156486633
https://www.flickr.com/photos/wadetregaskis/50156486633
https://creativecommons.org/licenses/by-nc/2.0/

BIBLIOGRAPHY 85

Conference on Human Factors in Computing Systems, CHI ’11, pages 1471–1480, New York,

NY, USA, 2011. ACM.

[144] Walt Disney Animation Studios. Cycles. SIGGRAPH Immersive Pavilion, 2018. Dir. Jeff

Gipson.

[145] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.

High-resolution image synthesis and semantic manipulation with conditional gans. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages 8798–8807,

2018.

[146] Yiran Wang, Xingyi Li, Min Shi, Ke Xian, and Zhiguo Cao. Knowledge distillation for fast

and accurate monocular depth estimation on mobile devices. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 2457–

2465, June 2021.

[147] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

[148] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. Gp-gan: Towards realistic high-

resolution image blending. In Proceedings of the 27th ACM international conference on mul-

timedia, pages 2487–2495, 2019.

[149] Mai Xu, Chen Li, Shanyi Zhang, and Patrick Le Callet. State-of-the-art in 360 video/image

processing: Perception, assessment and compression. IEEE Journal of Selected Topics in

Signal Processing, 14(1):5–26, 2020.

[150] Su Xue, Aseem Agarwala, Julie Dorsey, and Holly Rushmeier. Understanding and improving

the realism of image composites. ACM Transactions on graphics (TOG), 31(4):1–10, 2012.

[151] Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen,

and Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

18381–18391, 2023.

[152] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-form

image inpainting with gated convolution. In Proc. ICCV, 2019.

[153] Jingyi Yu and Leonard McMillan. A framework for multiperspective rendering. Rendering

Techniques, 4:61–68, 2004.

[154] Jingyi Yu and Leonard McMillan. General linear cameras. In European Conference on Com-

puter Vision, pages 14–27. Springer, 2004.

BIBLIOGRAPHY 86

[155] Lihi Zelnik-Manor and Pietro Perona. Automating joiners. In Proceedings of the 5th Interna-

tional Symposium on Non-Photorealistic Animation and Rendering, NPAR ’07, page 121–131,

New York, NY, USA, 2007. Association for Computing Machinery.

[156] Lihi Zelnik-Manor, Gabriele Peters, and Pietro Perona. Squaring the circle in panoramas. In

Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, volume 2,

pages 1292–1299. IEEE, 2005.

[157] Yu Zeng, Zhe Lin, Huchuan Lu, and Vishal M. Patel. Cr-fill: Generative image inpainting with

auxiliary contextual reconstruction. In Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV), pages 14164–14173, October 2021.

[158] Jingxin Zhang, Eike Langbehn, Dennis Krupke, Nicholas Katzakis, and Frank Steinicke. De-

tection thresholds for rotation and translation gains in 360◦ video-based telepresence systems.

IEEE Transactions on Visualization and Computer Graphics, 24(4):1671–1680, April 2018.

[159] Jinsong Zhang, Kun Li, Yu-Kun Lai, and Jingyu Yang. Pise: Person image synthesis and

editing with decoupled gan, 2021.

[160] Yuqian Zhou, Connelly Barnes, Eli Shechtman, and Sohrab Amirghodsi. Transfill: Reference-

guided image inpainting by merging multiple color and spatial transformations. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

2266–2276, June 2021.

[161] Jun-Yan Zhu, Philipp Krahenbuhl, Eli Shechtman, and Alexei A Efros. Learning a discrimi-

native model for the perception of realism in composite images. In Proceedings of the IEEE

International Conference on Computer Vision, pages 3943–3951, 2015.

[162] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual

manipulation on the natural image manifold. In Computer Vision–ECCV 2016: 14th European

Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14, pages

597–613. Springer, 2016.

[163] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image trans-

lation using cycle-consistent adversarial networks. In Proceedings of the IEEE international

conference on computer vision, pages 2223–2232, 2017.

[164] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang,

and Eli Shechtman. Toward multimodal image-to-image translation. Advances in neural

information processing systems, 30, 2017.

[165] Yiming Zhu, Hongyu Liu, Yibing Song, Ziyang Yuan, Xintong Han, Chun Yuan, Qifeng Chen,

and Jue Wang. One model to edit them all: Free-form text-driven image manipulation with

BIBLIOGRAPHY 87

semantic modulations. Advances in Neural Information Processing Systems, 35:25146–25159,

2022.

[166] Denis Zorin and Alan H Barr. Correction of geometric perceptual distortions in pictures. In

Proceedings of the 22nd annual conference on Computer graphics and interactive techniques,

pages 257–264, 1995.

	Abstract
	Acknowledgments
	Introduction
	Tasks Overview
	Editing Photographic Composition
	Adaptive Playback of 360-degree Video

	Broader Impact
	Statement of Published Papers and Multiple Authorship
	Roadmap

	Related Work
	Realism in Computer Graphics
	Exploring Realistic Edits
	Related Work: ZoomShop
	Related Work: Gated Clips
	Interactive and looping video
	Gaze guidance
	View-dependent 360-degree video and animation

	ZoomShop
	Method
	Editing Objects at Different Depths

	The ZoomShop Application
	Boundary Curve Representation
	User Controls
	Translation Map
	Image Synthesis
	Example Workflow

	Results
	User Impressions

	Chapter Summary

	Gated Clips
	Introduction
	Task-Dependent Realism
	Overview

	Types of Gates
	View-Dependent Video Textures
	Generating View-Dependent Textures
	Forward Arcs to the Gate
	Alternative Q-Learning Approach

	Example Videos
	User Study
	Discussion
	Limitations and Future Work
	Chapter Summary

	Conclusion and Future Work
	Identifying Constraints
	Exploration of Edits
	Generating and Editing Synthetic Content
	Visual Perception
	Non-Visual Domains

	ZoomShop
	Geometric Description and Derivation of b(z)
	Piecewise Linear Camera Model
	Curved Paths
	Discontinuous Paths

	Additional Translation Results

	Gated Clips
	View-Dependent Arc Cost Computation
	View-Dependent Arc Cost Matrix

	Buffer Edge Costs

	Bibliography

